С помощью матрицы алгебраических дополнений
CT — транспонированная матрица алгебраических дополнений;
Полученная матрица A−1 и будет обратной. Сложность алгоритма зависит от сложности алгоритма расчета определителя Odet и равна O(n²)·Odet. Иначе говоря, обратная матрица равна единице, делённой на определитель исходной матрицы и умноженной на транспонированную матрицу алгебраических дополненийэлементов исходной матрицы. Ма́тричный метод решения (метод решения через обратную матрицу) систем линейных алгебраических уравнений с ненулевым определителем состоит в следующем. Пусть дана система линейных уравнений с n неизвестными (над произвольным полем):
Тогда её можно переписать в матричной форме: AX = B, где A — основная матрица системы, B и X — столбцы свободных членов и решений системы соответственно:
Умножим это матричное уравнение слева на A − 1 — матрицу, обратную к матрице A: Так как A − 1A = E, получаем X = A − 1B. Правая часть этого уравнения даст столбец решений исходной системы. Условием применимости данного метода (как и вообще существования решения неоднородной системы линейных уравнений с числом уравнений, равным числу неизвестных) является невырожденность матрицы A. Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A: .
Для однородной системы линейных уравнений, то есть когда вектор B = 0, действительно обратное правило: система AX = 0 имеет нетривиальное (то есть ненулевое) решение только если det A = 0.
- Вопрос 1. Матрицей называется прямоугольная таблица чисел, содержащая m строк и n столбцов.
- Вопрос 2.
- I. Минор
- II. Алгебраические дополнения
- Вопрос 4. Определители любого(Высших??) порядка. Свойства определителей.
- Вопрос 5.
- Матрица 2х2
- С помощью матрицы алгебраических дополнений
- Пример решения неоднородной слау
- Вопрос 6.
- Вопрос 8.
- 2. Простейшие операции над векторами
- Вопрос 9.
- Вопрос 10.
- Вопрос 11.
- Вопрос 12.
- Вопрос 13.
- Свойства обратной матрицы
- Вопрос 14.
- Вопрос 15.
- Взаимное расположение двух плоскостей
- Вопрос 16.
- Вопрос 17. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка
- Вопрос 18. Прямая на плоскости. Общее урав прямой в вопросе 16. Взаимное расположение двух прямых
- Вопрос 19.20,21,22 (общее)
- Вопрос 23
- Вопрос 24.
- Бесконечно малая величина
- Бесконечно большая величина
- Вопрос 25.
- Вопрос 26.
- Вопрос 27.
- Вопрос 28. Свойства бесконечно малых функций
- Вопрос 29. Второй замечательный предел:
- Вопрос 30.
- Вопрос 31. (32)
- Вопрос 32. (33) Приращение функции f(X) в точке X — функция обычно обозначаемая Δxf от новой переменной Δx определяемая как
- Вопрос 33 (34). Применение дифференциала к приближенным вычислениям
- Вопрос 34 (35) Условия монотонности функции
- Вопрос 35 (36) Основные правила дифференцирования
- Вопрос 36 (37) Экстремум функции
- Вопрос 37 (38)
- Вопрос 38 (39) Непрерывность функций
- Вопрос 39 (40).
- Вопрос 40 (41).
- Вопрос 41 (42)
- Вопрос 42 (43)
- Вопрос 43 (44) Теорема Лагра́нжа в теории групп гласит:
- Вопрос 45 (46) Производные и дифференциалы высших порядков
- Вопрос 47 (48) 1.А)Найти одз и точки разрыва функции.