logo
Алгебраические группы матриц

2.1 Возвращение к уравнениям

В арифметическом линейном пространстве столбцов высоты рассмотрим векторов

и их линейную оболочку . Пусть дан еще один вектор . Спрашивается, принадлежит ли подпространству , а если принадлежит, то каким образом его координаты выражаются через координаты векторов . В случае вторая часть вопроса относится к значениям координат вектора в базисе . Мы берем линейную комбинацию векторов с произвольными коэффициентами и составляем уравнение . Наглядный вид этого уравнения

есть лишь иная запись системы из линейных уравнений с неизвестными:

Первое впечатление таково, что мы вернулись к исходным позициям, потеряв время и ничего не выиграв. На самом же деле мы располагаем теперь рядом важных понятий. Осталось приобрести навыки в обращении с ними.

В этом месте удобно условиться в обозначениях. В дальнейшем для сокращения записи мы часто будем обозначать сумму значком . При этом --- величины произвольной природы (числа, векторы-строки и т. д.), для которых выполнены все законы сложения чисел или векторов. Правила

достаточно понятны, чтобы их нужно было разъяснять. Будут рассматриваться также двойные суммы,

в которых порядок суммирования (по первому и по второму индексу) можно выбирать по своему желанию. Это легко понять, если расположить величины в прямоугольную матрицу размера : в нашей воле начинать суммирование элементов матрицы по строкам или по столбцам.

Другие возможные типы суммирования будут разъясняться в нужном месте.