1.1 Примеры алгебраических групп матриц
Классические матричные группы - общая, специальная, симплектическая и ортогональная:
где
- единичная матрица и штрих обозначает транспонирование.
Диагональная группа , группы клеточно-диагональных матриц данного вида. Треугольная группа (для определенности --- с нижним нулевым углом), унитреугольная группа (треугольные матрицы с единичной диагональю), группы клеточно-треугольных матриц данного вида.
Централизатор произвольного множества из в алгебраической группе , нормализатор замкнутого множества из в .
Пересечение всех алгебраических групп, содержащих данное множество матриц из --- алгебраическая группа. Она обозначается и называется алгебраической группой, порожденной множеством .
Каждую алгебраическую линейную группу из можно изоморфно --- в смысле умножения и полиномиальной топологии --- отождествить с замкнутой подгруппой из в силу формулы
Такое отождествление позволяет при желании ограничиться рассмотрением только таких групп матриц, которые сами являются алгебраическими множествами (а не их невырожденными частями). Это дает другое оправдание тем вольностям в терминологии, которые упоминались в начале параграфа.
Множество всех матриц из , оставляющих инвариантной заданную невырожденную билинейную форму на .
Пусть --- алгебра над конечной размерности (безразлично, ассоциативная или нет), --- группа всех ее автоморфизмов. Фиксируя в какую-нибудь базу и сопоставляя автоморфизмам алгебры их матрицы в этой базе, мы получим на строение алгебраической группы. Действительно, пусть
т. е. --- структурные константы алгебры . Пусть далее
где . Тогда задается в матричных координатах очевидными полиномиальными уравнениями, вытекающими из соотношений
Указать в приведенных выше примерах определяющие уравнения, найти общую точку, если она есть.
В дальнейшем нам встретится еще много примеров и конструкций алгебраических матричных групп.
1.1.1 Если матричная группа содержит алгебраическую подгруппу конечного индекса, то сама алгебраическая.
Доказательство. Пусть - аннулятор группы в , - его корень в . Надо показать, что . Пусть, напротив, . Пусть - смежные классы по . Для каждого выберем многочлен
и положим
Очевидно, , . Получили противоречие.
Пусть --- алгебраическая группа, , --- подмножество и замкнутое подмножество из . Тогда множества
где , замкнуты. Если тоже замкнуто и --- общее поле квазиопределения для , , , то , , квазиопределены над . В частности, если существует хотя бы одно с условием (соответственно, , ), то можно считать, что (см. 7.1.5).
Если на множестве выполняется теоретико-групповое тождество , то оно выполняется и на его замыкании . В частности, коммутативность, разрешимость, нильпотентность матричной группы сохраняются на ее замыкании в полиномиальной топологии.
- Введение
- 1. Алгебраические группы матриц
- 1.1 Примеры алгебраических групп матриц
- 1.2 О полугруппах
- 1.3 Компоненты алгебраической группы
- 1.4. О -группах
- 2 Ранг матрицы
- 2.1 Возвращение к уравнениям
- 2.2 Ранг матрицы
- 2.3 Критерий совместности
- 3. Линейные отображения. Действия с матрицами
- 3.1 Матрицы и отображения
- 3.2 Произведение матриц
- 3.3 Квадратные матрицы
- Заключение
- С помощью матрицы алгебраических дополнений
- [Править] с помощью матрицы алгебраических дополнений
- Нахождение обратной матрицы с помощью матрицы из алгебраических дополнений.
- С помощью матрицы алгебраических дополнений
- С помощью матрицы алгебраических дополнений
- 19. Алгебраические свойства матриц. Понятие обратной матрицы. Применение
- §1. Понятие группы. Группа ортогональных матриц. Группа комплексных корней
- Матрицы и системы линейных алгебраических уравнений