2.2 Ранг матрицы
Назовем пространством столбцов прямоугольной матрицы размера введенное выше пространство , которое мы будем обозначать теперь символом или просто (в --- вертикальный). Его размерность назовем рангом по столбцам матрицы . Аналогично вводится ранг по строкам матрицы : , где --- подпространство в , натянутое на векторы-строки , (г --- горизонтальный). Другими словами,
- ранги систем векторов-столбцов и соответственно векторов-строк. По теореме о существовании конечного базиса у подпространства величины и определены правильно.
Будем говорить, что матрица получена из при помощи элементарного преобразования типа (I), если для какой-то пары индексов и для . Если же для всех и , , то говорим, что к применено элементарное преобразование типа (II).
Заметим, что элементарные преобразования обоих типов обратимы, т. е. матрица , получающаяся из при помощи одного элементарного преобразования, переходит снова в путем применения одного элементарного преобразования, причем того же типа.
2.2.1 Лемма. Если матрица получена из прямоугольной матрицы путем применения конечной последовательности элементарных преобразований, то имеют место равенства:
(i)
(ii)
Доказательство. Достаточно рассмотреть тот случай, когда получена из путем применения одного элементарного преобразования (сокращенно э. п.).
(i) Так как, очевидно, , то э. п. типа (I) не меняет . Далее, и, следовательно, , так что не меняется и при э. п. типа (II).
(ii) Пусть --- столбцы матрицы . Нам нужно доказать, что
Тогда всякой, в том числе и максимальной, независимой системе столбцов одной матрицы будет отвечать независимая система столбцов с теми же номерами другой матрицы, чем и устанавливается равенство . Заметим еще, что в силу обратимости элементарных преобразований достаточно доказать импликацию в одну сторону. Пусть, например, . Тогда, заменяя в (1) на и все на 0, мы видим, что --- решение однородной системы ОС, ассоциированной с линейной системой (2). По соответствующей теореме это решение будет также решением однородной системы , получающейся из ОС при помощи э. п. типа (I) или (II) и имеющей своей матрицей как раз матрицу . Так как система кратко записывается в виде , то мы приходим к соотношению
Основным результатом этого параграфа является следующее утверждение:
2.2.2 Теорема. Для любой прямоугольной -матрицы справедливо равенство (это число называется просто рангом матрицы и обозначается символом ).
Доказательство. Т. к. конечным числом элементарных преобразований, совершаемых над строками , матрицу можно привести к ступенчатому виду:
с . Согласно лемме так что нам достаточно доказать равенство .
Столбцы матриц и с номерами , отвечающими главным неизвестным линейной системы (2), будем называть базисными столбцами. Эта терминология вполне оправдана. Предположив наличие соотношения
связывающего векторы-столбцы , , матрицы (3), получим последовательно: , , , , , а так как , то . Значит, и . Но пространство , порожденное столбцами матрицы , отождествляется с пространством столбцов матрицы, которая получается из удалением последних нулевых строк. Поэтому . Сопоставление двух неравенств показывает, что (неравенство вытекает также из того очевидного соображения, что все столбцы матрицы являются линейными комбинациями базисных; проделайте это самостоятельно в качестве упражнения).
С другой стороны, все ненулевые строки матрицы линейно независимы: любое гипотетическое соотношение
как и в случае со столбцами, дает последовательно , , , . Откуда . Стало быть,
- Введение
- 1. Алгебраические группы матриц
- 1.1 Примеры алгебраических групп матриц
- 1.2 О полугруппах
- 1.3 Компоненты алгебраической группы
- 1.4. О -группах
- 2 Ранг матрицы
- 2.1 Возвращение к уравнениям
- 2.2 Ранг матрицы
- 2.3 Критерий совместности
- 3. Линейные отображения. Действия с матрицами
- 3.1 Матрицы и отображения
- 3.2 Произведение матриц
- 3.3 Квадратные матрицы
- Заключение
- С помощью матрицы алгебраических дополнений
- [Править] с помощью матрицы алгебраических дополнений
- Нахождение обратной матрицы с помощью матрицы из алгебраических дополнений.
- С помощью матрицы алгебраических дополнений
- С помощью матрицы алгебраических дополнений
- 19. Алгебраические свойства матриц. Понятие обратной матрицы. Применение
- §1. Понятие группы. Группа ортогональных матриц. Группа комплексных корней
- Матрицы и системы линейных алгебраических уравнений