logo
Алгебраические группы матриц

2.2 Ранг матрицы

Назовем пространством столбцов прямоугольной матрицы размера введенное выше пространство , которое мы будем обозначать теперь символом или просто (в --- вертикальный). Его размерность назовем рангом по столбцам матрицы . Аналогично вводится ранг по строкам матрицы : , где --- подпространство в , натянутое на векторы-строки , (г --- горизонтальный). Другими словами,

- ранги систем векторов-столбцов и соответственно векторов-строк. По теореме о существовании конечного базиса у подпространства величины и определены правильно.

Будем говорить, что матрица получена из при помощи элементарного преобразования типа (I), если для какой-то пары индексов и для . Если же для всех и , , то говорим, что к применено элементарное преобразование типа (II).

Заметим, что элементарные преобразования обоих типов обратимы, т. е. матрица , получающаяся из при помощи одного элементарного преобразования, переходит снова в путем применения одного элементарного преобразования, причем того же типа.

2.2.1 Лемма. Если матрица получена из прямоугольной матрицы путем применения конечной последовательности элементарных преобразований, то имеют место равенства:

(i)

(ii)

Доказательство. Достаточно рассмотреть тот случай, когда получена из путем применения одного элементарного преобразования (сокращенно э. п.).

(i) Так как, очевидно, , то э. п. типа (I) не меняет . Далее, и, следовательно, , так что не меняется и при э. п. типа (II).

(ii) Пусть --- столбцы матрицы . Нам нужно доказать, что

Тогда всякой, в том числе и максимальной, независимой системе столбцов одной матрицы будет отвечать независимая система столбцов с теми же номерами другой матрицы, чем и устанавливается равенство . Заметим еще, что в силу обратимости элементарных преобразований достаточно доказать импликацию в одну сторону. Пусть, например, . Тогда, заменяя в (1) на и все на 0, мы видим, что --- решение однородной системы ОС, ассоциированной с линейной системой (2). По соответствующей теореме это решение будет также решением однородной системы , получающейся из ОС при помощи э. п. типа (I) или (II) и имеющей своей матрицей как раз матрицу . Так как система кратко записывается в виде , то мы приходим к соотношению

Основным результатом этого параграфа является следующее утверждение:

2.2.2 Теорема. Для любой прямоугольной -матрицы справедливо равенство (это число называется просто рангом матрицы и обозначается символом ).

Доказательство. Т. к. конечным числом элементарных преобразований, совершаемых над строками , матрицу можно привести к ступенчатому виду:

с . Согласно лемме так что нам достаточно доказать равенство .

Столбцы матриц и с номерами , отвечающими главным неизвестным линейной системы (2), будем называть базисными столбцами. Эта терминология вполне оправдана. Предположив наличие соотношения

связывающего векторы-столбцы , , матрицы (3), получим последовательно: , , , , , а так как , то . Значит, и . Но пространство , порожденное столбцами матрицы , отождествляется с пространством столбцов матрицы, которая получается из удалением последних нулевых строк. Поэтому . Сопоставление двух неравенств показывает, что (неравенство вытекает также из того очевидного соображения, что все столбцы матрицы являются линейными комбинациями базисных; проделайте это самостоятельно в качестве упражнения).

С другой стороны, все ненулевые строки матрицы линейно независимы: любое гипотетическое соотношение

как и в случае со столбцами, дает последовательно , , , . Откуда . Стало быть,