1.4. О -группах
Пусть - поле. По определению, алгебраическая -группа --- это группа матриц из , выделяемая полиномиальными уравнениями с коэффициентами в . Иначе можно сказать, что это -порция, т. е. пересечение с , некоторой алгебраической группы, квазиопределенной над . Обычные алгебраические группы тоже можно трактовать как -группы по отношению к некоторой большей универсальной области . В этом смысле понятие алгебраической -группы является более общим, так как от не требуется ни алгебраической замкнутости, ни бесконечной степени трансцендентности над простым полем.
В свойствах алгебраических групп и -групп много общего. Имеется сандартный способ перехода от первых ко вторым --- посредством поля определения (в чём и состоит основное значение этого понятия). Нам не раз представится возможность продемонстрировать этот способ. В целом же -группы в нашем изложении останутся на заднем плане, лишь иногда выходя на авансцену.
Многие результаты о -группах по формулировке и доказательству вполне аналогичны результатам об абсолютных алгебраических группах (в ) и опираются на сведения из алгебраической геометрии для -множеств, (по определению, алгебраическое -множество выделяется в уравнениями с коэффициентами из ).
- Введение
- 1. Алгебраические группы матриц
- 1.1 Примеры алгебраических групп матриц
- 1.2 О полугруппах
- 1.3 Компоненты алгебраической группы
- 1.4. О -группах
- 2 Ранг матрицы
- 2.1 Возвращение к уравнениям
- 2.2 Ранг матрицы
- 2.3 Критерий совместности
- 3. Линейные отображения. Действия с матрицами
- 3.1 Матрицы и отображения
- 3.2 Произведение матриц
- 3.3 Квадратные матрицы
- Заключение
- С помощью матрицы алгебраических дополнений
- [Править] с помощью матрицы алгебраических дополнений
- Нахождение обратной матрицы с помощью матрицы из алгебраических дополнений.
- С помощью матрицы алгебраических дополнений
- С помощью матрицы алгебраических дополнений
- 19. Алгебраические свойства матриц. Понятие обратной матрицы. Применение
- §1. Понятие группы. Группа ортогональных матриц. Группа комплексных корней
- Матрицы и системы линейных алгебраических уравнений