3.1 Матрицы и отображения
Пусть и --- арифметические линейные пространства столбцов высоты и соответственно. Пусть, далее, --- матрица размера . Определим отображение , полагая для любого
где --- столбцы матрицы . Так как они имеют высоту , то в правой части (1) стоит вектор-столбец . Более подробно (1) переписывается в виде
Если ,
то .
Аналогично .
Обратно, предположим, что --- отображение множеств, обладающее следующими двумя свойствами:
(i) для всех ;
(ii) для всех .
Тогда, обозначив стандартные базисные столбцы пространств и соответственно символами и , мы воспользуемся свойствами (i), (ii) в применении к произвольному вектору
:
Соотношение (2) показывает, что отображение полностью определяется своими значениями на базисных векторах-столбцах. Положив
мы обнаруживаем, что задание равносильно заданию прямоугольной матрицы размера со столбцами , а соотношения (1) и (2) фактически совпадают. Стало быть, можно положить .
3.1.1 . Определение. Отображение , обладающее свойствами (i), (ii), называется линейным отображением из в . Часто, в особенности при , говорят о линейном преобразовании. Матрица называется матрицей линейного отображения .
Пусть , --- два линейных отображения с матрицами и . Тогда равенство равносильно совпадению значений для всех . В частности, , откуда и .
Резюмируем наши результаты:
3.1.2 Теорема. Между линейными отображениями в и матрицами размера существует взаимно однозначное соответствие.
Следует подчеркнуть, что бессмысленно говорить о линейных отображениях произвольных множеств и . Условия (i), (ii) предполагают, что и --- подпространства арифметических линейных пространств , .
Обратим внимание на специальный случай , когда линейное отображение , обычно называемое линейной функцией от переменных, задается скалярами :
Линейные функции (4), равно как и произвольные линейные отображения при фиксированных и можно складывать и умножать на скаляры. В самом деле, пусть --- два линейных отображения. Отображение
определяется своими значениями:
В правой части стоит обычная линейная комбинация векторов-столбцов.
Так как
то - линейное отображение. По теореме 1 можно говорить о его матрице . Чтобы найти , выпишем, следуя (3), столбец с номером :
Матрицу с элементами естественно назвать линейной комбинацией матриц и с коэффициентами и :
Итак, .
Особенно часто нами будет использоваться тот факт, что линейные комбинации линейных функций снова являются линейными функциями.
- Введение
- 1. Алгебраические группы матриц
- 1.1 Примеры алгебраических групп матриц
- 1.2 О полугруппах
- 1.3 Компоненты алгебраической группы
- 1.4. О -группах
- 2 Ранг матрицы
- 2.1 Возвращение к уравнениям
- 2.2 Ранг матрицы
- 2.3 Критерий совместности
- 3. Линейные отображения. Действия с матрицами
- 3.1 Матрицы и отображения
- 3.2 Произведение матриц
- 3.3 Квадратные матрицы
- Заключение
- С помощью матрицы алгебраических дополнений
- [Править] с помощью матрицы алгебраических дополнений
- Нахождение обратной матрицы с помощью матрицы из алгебраических дополнений.
- С помощью матрицы алгебраических дополнений
- С помощью матрицы алгебраических дополнений
- 19. Алгебраические свойства матриц. Понятие обратной матрицы. Применение
- §1. Понятие группы. Группа ортогональных матриц. Группа комплексных корней
- Матрицы и системы линейных алгебраических уравнений