Дифференцирование в линейных нормированных пространствах
Введение
Функциональный анализ -- раздел математики, в котором изучаются бесконечномерные пространства и их отображения.
Понятие нормированного пространства - одно из самых основных понятий функционального анализа. Теория нормированных пространств была построена, главным образом, С. Банахом в 20-х годах 20 века. Функциональный анализ за последние два десятилетия настолько разросся, настолько широко и глубоко проник почти во все области математики, что сейчас даже трудно определить самый предмет этой дисциплины. Однако в функциональном анализе есть несколько больших «традиционных» направлений, которые и поныне в значительной степени определяют его лицо. К их числу принадлежит дифференцирование линейных нормированных пространств.
Содержание
- Введение
- Основные понятия
- Сильный дифференциал (дифференциал Фреше)
- Слабый дифференциал (дифференциал Гато)
- Формула конечных приращений
- Связь между слабой и сильной дифференцируемостью
- Дифференцируемые функционалы
- Абстрактные функции
- Интеграл
- Производные высших порядков
- Дифференциалы высших порядков
- Формула Тейлора
- Заключение