Дифференцирование в линейных нормированных пространствах
Абстрактные функции
Предположим теперь, что к числовой прямой сводится пространство аргументов X. Отображение F(x), сопоставляющее числу х элемент некоторого банахова пространства У, называется абстрактной функцией. Производная F(х) абстрактной функции (если она существует) представляет собой (при каждом х) элемент пространства У -- касательный вектор к кривой F(x). Для абстрактной функции (представляющей собой функцию одного числового аргумента) слабая дифференцируемость совпадает с сильной.
Yandex.RTB R-A-252273-3Содержание
- Введение
- Основные понятия
- Сильный дифференциал (дифференциал Фреше)
- Слабый дифференциал (дифференциал Гато)
- Формула конечных приращений
- Связь между слабой и сильной дифференцируемостью
- Дифференцируемые функционалы
- Абстрактные функции
- Интеграл
- Производные высших порядков
- Дифференциалы высших порядков
- Формула Тейлора
- Заключение
Похожие материалы
- 1.4.4. Нормированные линейные пространства
- 8.4. Нормированные пространства
- Линейные нормированные пространства Основные понятия и примеры
- Изоморфные и изометричные линейные нормированные пространства
- Компактность в линейных нормированных пространствах
- Линейные нормированные пространства
- Линейное пространство. Аксиомы линейного пространства. Нормированное пространство. Банаховы пространства.
- § 2. Нормированные линейные пространства
- 18.Метрические, линейные, нормированные, евклидовы пространства.