Интегрирование дифференциальных уравнений с помощью степенных рядов
1. ОСНОВНЫЕ ПОНЯТИЯ, СВЯЗАННЫЕ С РЯДАМИ И ДИФФЕРЕНЦИАЛЬНЫМИ УРАВНЕНИЯМИ
Содержание
- ВВЕДЕНИЕ
- 1. ОСНОВНЫЕ ПОНЯТИЯ, СВЯЗАННЫЕ С РЯДАМИ И ДИФФЕРЕНЦИАЛЬНЫМИ УРАВНЕНИЯМИ
- 1.1 Ряды. Основные понятия. Необходимый признак сходимости
- 1.2 Степенные ряды. Свойства степенных рядов
- 1.3 Ряд Тейлора. Ряд Маклорена
- 1.4 Дифференциальные уравнения
- 1.5 Интегрирование дифференциальных уравнений с помощью рядов
- 2. ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ СТЕПЕННЫХ РЯДОВ ПРИ ИНТЕГРИРОВАНИИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
- 2.1 Уравнение Бесселя
- 2.2 Примеры интегрирования
- 2.3 Примеры интегрирования в Maple
- ЗАКЛЮЧЕНИЕ
Похожие материалы
- Вопрос 49. Решение дифференциальных уравнений с помощью степенных рядов.
- 10. Интегрирование дифференциальных уравнений с помощью степенных рядов
- Интегрирование дифференциальных уравнений с помощью степенных рядов
- 4. Приложения степенных рядов к приближенным вычислениям
- Решение дифференциальных уравнений с помощью степенных рядов.
- 7.22 Решение дифференциальных уравнений с помощью степенных рядов
- 2 Степенным рядом называется ряд вида
- 4.23. Решение дифференциальных уравнений с помощью степенных рядов
- Интегрирование линейных дифференциальных уравнений с помощью степенных рядов