logo search
Элементы векторного анализа

§2. КРИВОЛИНЕЙНЫЙ ИНТЕГРАЛ II РОДА

Пусть на плоскости Oxy задана непрерывная кривая L = АВ и функция P(x; y), определенная в каждой точке кривой. Разобьем кривую L последовательными точками А0=А, А1, А2, . . . , Аn=В в направлении от точки А к точке В на n дуг i= с длинами (i = 1,2, . . . , n). На каждой элементарной дуге i возьмем точку (; ) и составим сумму вида:

где проекция дуги i на ось Ox (рис.2).

Определение. Если при д= интегральная сумма (2.1) имеет конечный предел, не зависящий ни от способа разбиения кривой АВ, ни от выбора точек ( ; ), то его называют криволинейным интегралом по координате x (или II рода) от функции P(x; y) по кривой L:

Аналогично вводится криволинейный интеграл от функции Q(x; y) по координате y:

где проекция дуги на ось Oy.

Криволинейный интеграл II рода общего вида определяется равенством:

Основные свойства криволинейного интеграла II рода

1? При изменении направления пути интегрирования криволинейный интеграл II рода изменяет свой знак на противоположный:

2? Если кривая АВ точкой С разбита на две части АС и СВ, то интеграл по всей кривой равен сумме интегралов по ее частям:

3? Если кривая АВ лежит в плоскости, перпендикулярной оси Ox, то

аналогично для кривой, лежащей в плоскости, перпендикулярной оси Oy:

4? Криволинейный интеграл по замкнутой кривой (обозначается

не зависит от выбора начальной точки (зависит только от направления обхода кривой).

Вычисление криволинейного интеграла 1-го рода

Пусть кривая L задана параметрическими уравнениями:

x = x (t), y=y (t), ? t ?, где x (t), y (t) непрерывно дифференцируемые функции на отрезке [, ] функции. Тогда

Пусть кривая L задана явно уравнением:

Геометрические приложения

v Площадь S плоской фигуры, расположенной в плоскости Oxy и ограниченной замкнутой линией L, можно найти по формуле

при этом кривая L обходится против часовой стрелки.

v Переменная сила на участке АВ равна

Условия независимости криволинейного интеграла II рода от пути интегрирования

Для того чтобы криволинейный интеграл

не зависел от пути интегрирования в односвязной области D (область без «дыр»), в которой существуют и непрерывны и необходимо и достаточно, чтобы

Замечание. Криволинейные интегралы I и II рода связаны соотношением

где и - углы, образованные касательной к кривой АВ в точке M(x; y) с осями Ox и Oy.