logo
Элементы векторного анализа

Производная скалярного поля по направлению

Производной скалярной функции U = f(x;,y; z) по направлению вектора

M0(x0; y0; z0) называется предел, если он существует, отношения приращения ДU0 функции при смещении из точки M0(x0; y0; z0) в направлении вектора в точку M1(x; y; z) к величине этого смещения , когда с > 0, то есть

Следовательно, характеризует скорость изменения величины U в точке M0 в направлении вектора .

Очевидно, что функция U имеет бесчисленное множество производных по направлениям в каждой точке M. Получим формулу для вычисления производной по направлению. Так как

где величины x0, y0 ,z0, cos б, cos в, cos г фиксированы, то U(M1) есть функция только смещения с

Обозначим эту функцию

При с = 0 имеем ш(0) = U(x0, y0, z0) = U(M0). Следовательно:

Т. е. получим формулу:

выражающую производную от функции U = f(x;,y; z) по направлению вектора

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4