§2. СКАЛЯРНОЕ ПОЛЕ
Пусть задано скалярное стационарное поле U = f(M) = f(x; y; z) , где функцию f(x; y; z) будем всегда предполагать непрерывно дифференцируемой в рассматриваемой области.
Основной вопрос исследования скалярного поля есть вопрос об изменении функции U при переходе из одной точки пространства в другую. Для выяснения этого вопроса рассмотрим, прежде всего, геометрическое место точек, в которых величина U сохраняет постоянное значение. Это геометрическое место точек называют поверхностью уровня скалярного поля U. Ее уравнение в выбранной системе координат имеет вид: U(x; y; z) = C, где C = const. Следовательно, изменяя значения C, получаем семейство поверхностей уровня, которые заполняют всю область, где определено поле, и никакие две поверхности уровня, отвечающие различным значениям C, не имеют общих точек.
Задание всех поверхностей уровня с указанием соответствующих значений C равносильно заданию самого поля. Указанный способ изображения поля особенно удобен, если речь идет о поле, заданном в плоской области D двух переменных. В этом случае уравнение U(x,y) = C определяет, вообще говоря, некоторую кривую линию, называемую линией уровня плоского скалярного поля.
Такие линии различных скалярных полей всем хорошо известны: линии равных высот (горизонтали) удобны для изображения размера местности, линии равных температур (изотермы) или линии равных давлений (изобары) в метеорологии и т. д.
- ВВЕДЕНИЕ
- Глава I. Криволинейные и поверхностные интегралы
- §1. КРИВОЛИНЕЙНЫЙ ИНТЕГРАЛ I РОДА
- §2. КРИВОЛИНЕЙНЫЙ ИНТЕГРАЛ II РОДА
- §3. ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ I РОДА
- Глава II. Теория поля
- §1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ПОЛЯ
- §2. СКАЛЯРНОЕ ПОЛЕ
- Производная скалярного поля по направлению
- Градиент скалярного поля
- §3. ВЕКТОРНОЕ ПОЛЕ И ЕГО ЦИРКУЛЯЦИЯ
- Поток векторного поля
- Дивергенция векторного поля. Формула Остроградского-Гаусса в векторной форме
- Вихревой вектор поля. Формула Стокса в векторной форме
- §4. СПЕЦИАЛЬНЫЕ ВЕКТОРНЫЕ ПОЛЯ
- §5. ОПЕРАТОР ЛАПЛАСА. ГАРМОНИЧСЕКИЕ ФУНКЦИИ
- ЗАКЛЮЧЕНИЕ