logo search
Элементы векторного анализа

Вихревой вектор поля. Формула Стокса в векторной форме

Вихревым вектором (вихрем), или ротором векторного поля

называется вектор, имеющий координаты:

Тем самым векторное поле порождает векторное поле вихря

Через символический вектор Гамильтона

вихревой вектор записывается как векторное произведение вектора на вектор поля , т. е.

Как легко видеть, выражение

стоящее под знаком поверхностного интеграла в формуле Стокса, представляет собой скалярное произведение вихря векторного поля на единичный вектор нормали к поверхности S.

Следовательно, формулу Стокса можно представить в векторной форме следующим образом:

Левая и правая части формулы () представляют, соответственно, циркуляцию векторного поля и поток его вихря. Значит, формула Стокса утверждает: циркуляция векторного поля по замкнутому контуру L равна потоку его вихря через поверхность S, натянутую на этот контур.

Можно определить проекцию вектора на любое направление следующим образом:

т.е. есть вектор, проекция которого на любое направление равна пределу отношения циркуляции векторного поля по контуру L плоской площадки ф, перпендикулярной этому направлению , к площади этой площадки, когда размеры этой площадки стремятся к нулю.

Или другими словами: есть вектор, нормальный к поверхности, на которой плотность циркуляции достигает наибольшего значения.

Это, кроме прочего, означает и то, что вихрь поля (как и градиент, так и дивергенция) не зависит от выбора системы координат, а является характеристикой самого поля.

Отметим некоторые свойства ротора:

1? Если - постоянный вектор, то

2?

3?

4? Если U - скалярная функция, а - векторная, то