logo search
shpory_po_vyshke_1_kurs_1_se23213may

24. Параболоид.

1. -это эллиптический параболоид.

Каноническое уравнение:

(р>0, q>0).

p = q - параболоид вращения вокруг оси Oz.

Сечения эллиптического параболоида плоскостями - либо эллипс, либо парабола, либо точка.

2. - гиперболический параболоид.

Сечения гиперболического параболоида плоскостями - либо гипербола, либо парабола, либо пара прямых (прямолинейных образующих).

25-26. Цилиндрические поверхности.

Поверхность, образованная движением прямой L, которая перемещается в пространстве, сохраняя постоянное направление и пересекая каждый раз некоторую кривую K, называется цилиндрической поверхностью или цилиндром при этом кривая К – направляющая цилиндра, а L – его образующая.

Эллиптический цилиндр

Эллиптическое уравнение:

Частным случаем эллиптического цилиндра является круговой цилиндр, его уравнение x2 + y2 = R2. Уравнение x2=2pz определяет в пространстве параболический цилиндр.

Уравнение: определяет в пространстве гиперболический цилиндр.

Все эти поверхности называются цилиндрами второго порядка, так как их уравнения есть уравнения второй степени относительно текущих координат x, y, z.