7. Метод Гаусса. Произвольные слау. Теорема Кронекера-Капелли.
Система уравнений (СУ), содерж m-уравнений и n-неизвестных наз. системой вида a11x1+a12x2+…+a1nxn=b1 … aM1x1+aM2x2+…+aMnxn=bm, где aij – коэф системы и изменяется от 1 до n. Расширенной матрицей наз матрица, сост из исходной матрицы А и свободных .
Решением системы наз n значений неизвестных x1=c1 … xn=cn, при подстановке которых все ур-ия системы обращаются в верное равенство.
Система уравнений наз. совместной, если имеет хотя бы одно решение, иначе она несовместна. Совместная система наз. определённой, если она имеет единственное решение.
Системы наз. равносильными, если они имеют одно и то же решение.
Замечание: эквивалентные системы получаются при элементарных преобразованиях при условии, что преобраз вып только под строками.
СЛАУ наз однородной, если все свободные члены=0.
Теорема Кронекера-Капелли: система лин алг ур-ий совместна, когда rangA=rang (волнистая). Теорема: если rang совместной системы= числу неизвестных, то система имеет одно решение. Теорема: если ранг совмест сист < числа неизвестных, то система имеет бесконеч решений.
Правило решения СУ.
1)найти ранг основной и расширенной матрицы (если rA не =rA с крыш, то система несовместна.
2) если rA=rA с крыш и =r, то система совместна и надо найти базисный минор порядка r.
3)Берём r ур-ий из коэф которых составлен базисн минор. Остальные ур-ия отбрасываем. Неизвестные, коэф которых входят в минор наз главными. Из оставл слева, а остальные (n-r) – справа.
4)Найти выражения главных неизв через свободные. Получено общее решение системы
5)Придавая свободным низвестным произвольное значение, получим соотв значения главн неизв, т.е. найдём частные решения.
- 3. Теорема о разложении определителя. Теорема Лапласа.
- 4. Обратная матрица. Процедура ее нахождения. Аннулирование матриц.
- 5. Ранг матрицы. Способы нахождения.
- 6. Невырожденные системы слау. Способы решения.
- 7. Метод Гаусса. Произвольные слау. Теорема Кронекера-Капелли.
- 8. Однородные слау. Фундаментальная система решений.
- 10. Векторы на плоскости и в пространстве. Операции над векторами. Коллинеарность и компланарность. Базис. Координаты.
- 1. Умножение вектора на число:
- 2. Сумма двух векторов:
- 11. Скалярное произведение векторов. Определение. Вычисление. Свойства.
- 13. Смешанное произведение векторов. Определение. Вычисление. Свойства.
- 18. Взаимное расположение прямой и плоскости.
- 19. Эллипс.
- 20. Гипербола.
- 21. Парабола.
- 22. Эллипсоид.
- 22. Гиперболоид и конус.
- 24. Параболоид.
- 30. Графики в полярной системе координат и параметрически заданных функций.
- 27. Действительные числа.
- 32. Множества и операции над ними.
- 28. Предел последовательности.
- 29. Теоремы о пределах последовательности.
- 30. Предел функции.
- 31. Бесконечно малые и бесконечно большие функции.
- 32. Односторонние пределы.
- 33. Сравнение бесконечно малых.
- 34. Теоремы о пределах.
- 35. Первый замечательный предел.
- 36. Второй замечательный предел.
- 37. Непрерывность функции в точке. Классификация точек разрыва.
- 38. Теоремы о непрерывных функциях. Непрерывность на отрезке. Равномерная непрерывность.
- 39. Производная функции, ее геометрический и физический смысл.
- 40. Дифференциал. Дифференцируемость.
- Свойства дифференциала.
- 41. Производная и дифференциал сложной функции.
- 42.Правила дифференцирования. Производные основных элементарных функций. Логарифмическое дифференцирование.
- 43. Производные и дифференциалы высших порядков. Производная параметрически заданных функций.
- 50.Асимтоты. Общая схема исследования функции
- 56. Предел, непрерывность и частные производные функции нескольких переменных.
- 57. Полный дифференциал. Производные высших порядков.
- 58. Касательная плоскость и нормаль к поверхности. Экстремум функции нескольких переменных.
- 59. Условный экстремум функции нескольких переменных. Наибольшее и наименьшее значение функции нескольких переменных в области.