18. Взаимное расположение прямой и плоскости.
Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости.
Пусть плоскость задана уравнением Ах +By + Cz + D=0, а прямая L уравнениями . Углом между прямой и плоскостью называется любой из двух смежных углов, образованных прямой и ее проекцией на плоскость. Обозначим через угол между плоскостью и прямой.
.
Если прямая L параллельна плоскости Q, то векторы n и S перпендикулярны, а потому , т.е.
=0 является условием параллельности прямой и плоскости.
Если прямая L перпендикулярна плоскости Q, то векторы n и S параллельны. Поэтому равенства
являются условиями перпендикулярности прямой и плоскости.
Пересечение прямой с плоскостью. Условие принадлежности прямой плоскости:
Рассмотрим прямую и плоскость Ах +By + Cz + D=0.
Одновременное выполнение равенств:
Аm +Bn+ Cp =0
Ах0+By0 + Cz0 + D=0 являются условием принадлежности прямой плоскости.
- 3. Теорема о разложении определителя. Теорема Лапласа.
- 4. Обратная матрица. Процедура ее нахождения. Аннулирование матриц.
- 5. Ранг матрицы. Способы нахождения.
- 6. Невырожденные системы слау. Способы решения.
- 7. Метод Гаусса. Произвольные слау. Теорема Кронекера-Капелли.
- 8. Однородные слау. Фундаментальная система решений.
- 10. Векторы на плоскости и в пространстве. Операции над векторами. Коллинеарность и компланарность. Базис. Координаты.
- 1. Умножение вектора на число:
- 2. Сумма двух векторов:
- 11. Скалярное произведение векторов. Определение. Вычисление. Свойства.
- 13. Смешанное произведение векторов. Определение. Вычисление. Свойства.
- 18. Взаимное расположение прямой и плоскости.
- 19. Эллипс.
- 20. Гипербола.
- 21. Парабола.
- 22. Эллипсоид.
- 22. Гиперболоид и конус.
- 24. Параболоид.
- 30. Графики в полярной системе координат и параметрически заданных функций.
- 27. Действительные числа.
- 32. Множества и операции над ними.
- 28. Предел последовательности.
- 29. Теоремы о пределах последовательности.
- 30. Предел функции.
- 31. Бесконечно малые и бесконечно большие функции.
- 32. Односторонние пределы.
- 33. Сравнение бесконечно малых.
- 34. Теоремы о пределах.
- 35. Первый замечательный предел.
- 36. Второй замечательный предел.
- 37. Непрерывность функции в точке. Классификация точек разрыва.
- 38. Теоремы о непрерывных функциях. Непрерывность на отрезке. Равномерная непрерывность.
- 39. Производная функции, ее геометрический и физический смысл.
- 40. Дифференциал. Дифференцируемость.
- Свойства дифференциала.
- 41. Производная и дифференциал сложной функции.
- 42.Правила дифференцирования. Производные основных элементарных функций. Логарифмическое дифференцирование.
- 43. Производные и дифференциалы высших порядков. Производная параметрически заданных функций.
- 50.Асимтоты. Общая схема исследования функции
- 56. Предел, непрерывность и частные производные функции нескольких переменных.
- 57. Полный дифференциал. Производные высших порядков.
- 58. Касательная плоскость и нормаль к поверхности. Экстремум функции нескольких переменных.
- 59. Условный экстремум функции нескольких переменных. Наибольшее и наименьшее значение функции нескольких переменных в области.