39. Производная функции, ее геометрический и физический смысл.
Определение. Производной функции f(x) в точке х = х0 называется предел отношения приращения функции в этой точке к приращению аргумента, если он существует.
у
f(x)
f(x0 +x) P
f
f(x0) M
x 0 x0 x x0 + x
Пусть f(x) определена на некотором промежутке (a, b). Тогда тангенс угла наклона секущей МР к графику функции.
,
где - угол наклона касательной к графику функции f(x) в точке (x0, f(x0)).
Угол между кривыми может быть определен как угол между касательными, проведенными к этим кривым в какой- либо точке.
Уравнение касательной к кривой:
Уравнение нормали к кривой: .
Фактически производная функции показывает как бы скорость изменения функции, как изменяется функция при изменении переменной.
Физический смысл производной функции f(t), где t- время, а f(t)- закон движения (изменения координат) – мгновенная скорость движения.
Соответственно, вторая производная функции- скорость изменения скорости, т.е. ускорение.
Yandex.RTB R-A-252273-3- 3. Теорема о разложении определителя. Теорема Лапласа.
- 4. Обратная матрица. Процедура ее нахождения. Аннулирование матриц.
- 5. Ранг матрицы. Способы нахождения.
- 6. Невырожденные системы слау. Способы решения.
- 7. Метод Гаусса. Произвольные слау. Теорема Кронекера-Капелли.
- 8. Однородные слау. Фундаментальная система решений.
- 10. Векторы на плоскости и в пространстве. Операции над векторами. Коллинеарность и компланарность. Базис. Координаты.
- 1. Умножение вектора на число:
- 2. Сумма двух векторов:
- 11. Скалярное произведение векторов. Определение. Вычисление. Свойства.
- 13. Смешанное произведение векторов. Определение. Вычисление. Свойства.
- 18. Взаимное расположение прямой и плоскости.
- 19. Эллипс.
- 20. Гипербола.
- 21. Парабола.
- 22. Эллипсоид.
- 22. Гиперболоид и конус.
- 24. Параболоид.
- 30. Графики в полярной системе координат и параметрически заданных функций.
- 27. Действительные числа.
- 32. Множества и операции над ними.
- 28. Предел последовательности.
- 29. Теоремы о пределах последовательности.
- 30. Предел функции.
- 31. Бесконечно малые и бесконечно большие функции.
- 32. Односторонние пределы.
- 33. Сравнение бесконечно малых.
- 34. Теоремы о пределах.
- 35. Первый замечательный предел.
- 36. Второй замечательный предел.
- 37. Непрерывность функции в точке. Классификация точек разрыва.
- 38. Теоремы о непрерывных функциях. Непрерывность на отрезке. Равномерная непрерывность.
- 39. Производная функции, ее геометрический и физический смысл.
- 40. Дифференциал. Дифференцируемость.
- Свойства дифференциала.
- 41. Производная и дифференциал сложной функции.
- 42.Правила дифференцирования. Производные основных элементарных функций. Логарифмическое дифференцирование.
- 43. Производные и дифференциалы высших порядков. Производная параметрически заданных функций.
- 50.Асимтоты. Общая схема исследования функции
- 56. Предел, непрерывность и частные производные функции нескольких переменных.
- 57. Полный дифференциал. Производные высших порядков.
- 58. Касательная плоскость и нормаль к поверхности. Экстремум функции нескольких переменных.
- 59. Условный экстремум функции нескольких переменных. Наибольшее и наименьшее значение функции нескольких переменных в области.