logo
shpory_po_vyshke_1_kurs_1_se23213may

35. Первый замечательный предел.

При вычислении пределов выражений, содержащих тригонометрические функции, часто используют предел называемый первым замечательным пределом.

Читается: предел отноешния синуса к его аргументу равен единице, когда аргумент стремится к нулю.

Доказательство:

Возьмем круг радиуса 1, обозначим радианную меру угла МОВ через х. пусть 0<x< . На рисунке , дуга МВ численно равна центральному углу х, . Очевидно, имеем . На основании соответствующих формул геометрии получаем . Разделим неравенство на >0, Получим 1<

Так как , то по признаку ( о пределе промежуточной функции) существования пределов .

А если x<0 => , где –x>0 =>

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4