logo search
Мат_моделир_2015_заоч_ЭП_ФИН / Мат_мод_лекции

Технологияопределения в среде эт коэффициентовлинейнойрегрессии в случае малых выборок

А. По статистикам распределения и связи

  1. Ввести исходную информацию (массивы ).

  2. Установить курсор на ячейке, в которую будет записываться значение определяемой статистики.

  1. Щелкнуть на кнопке мастера функций .

  2. Выбрать категорию статистическиеи найти требуемую функцию, щелкнуть на кнопке ОК.

  3. Заполнить поле диалогового окна определяемой функции (СРЗНАЧ, СТАНДОТКЛОН). При вычислении коэффициента корреляции в поле массив 1 диалогового окна функцииКОРРЕЛввести диапазон ячеек, в котором расположен массив Х, в поле массив 2 – диапазон ячеек, в котором расположен массив.

  4. По формулам (3.13), (3.14), (3.17) выполнить расчет коэффициентов регрессии и записать уравнения регрессии

Б. По формуле массива ЛИНЕЙН.

  1. Выделить смежный диапазон ячеек для размещения коэффициентов уравнения регрессии и регрессионных статистик. Щелкнуть в строке формул и на кнопке мастера функций.

  2. В диалоговом окне мастера функций выбрать категорию статистическиеи функциюЛИНЕЙН.

Рис.3.3. Диалоговое окно функции ЛИНЕЙН

  1. Заполнить поля диалогового окна функции ЛИНЕЙН (рис.3.3) (b2:b11;а2:а11;истина;истина) дляи =ЛИНЕЙН(а2:а11;b2:b11;истина;истина) для , в случае размещения элементов массива Х в диапазоне ячеек а2:а11 и элементов массивав диапазоне ячеекb2:b11 (пример 3.3).

  2. Для получения результата в выделенном диапазоне ячеек выполнить совместное нажатие клавиш [Ctrl]+[Shift]+[Enter].

Пример 3.3. Информация по однотипным предприятиям о возрасте (продолжительности эксплуатации) типового оборудования и затратах на его ремонт приведена в таблице 3.2.

Таблица 3.2. Исходные данные

Номер предприятия

1

2

3

4

5

6

7

8

9

10

Возраст оборудования лет

4

5

5

6

8

10

8

7

11

6

Затраты на ремонт, тыс.грн.

1,5

2

1,4

2,3

2,7

4,0

2,3

2,5

6,6

1,7

Требуется установить корреляционную связь между затратами на ремонт оборудования и его возрастом. Результаты расчета в среде ЭТ по статистикам распределения и связи представлены в таблице 3.3.

Таблица 3.3. Результаты расчета по статистикам распределения и связи

A

B

C

D

E

1

x

y

Yx

e

e^2

2

4

1,5

0,86739

0,63261

0,40019

3

5

2

1,47826

0,52174

0,27221

4

5

1,4

1,47826

-0,0783

0,00612

5

6

2,3

2,08913

0,21087

0,04447

6

8

2,7

3,31087

-0,6109

0,37316

7

10

4

4,53261

-0,5326

0,28367

8

8

2,3

3,31087

-1,0109

1,02186

9

7

2,5

2,7

-0,2

0,04

10

11

6,6

5,14348

1,45652

2,12146

11

6

1,7

2,08913

-0,3891

0,15142

12

7

2,7

4,71457

13

2,26078

1,5592

0,76767

14

0,88573

15

a

b

16

0,61087

-1,5761

Результаты расчета по функции ЛИНЕЙН представлены в таблице 3.4.

Таблица 3.4. Результаты расчета по функции ЛИНЕЙН

A

B

1

x

Y

2

4

1,5

3

5

2

4

5

1,4

5

6

2,3

6

8

2,7

7

10

4

8

8

2,3

9

7

2,5

10

11

6,6

11

6

1,7

12

0,61087

-1,5761

13

0,11319

0,82867

14

0,78453

0,76767

15

=29,1

=8

16

17,1654

4,71457

17

=5,39

= -1,92

18

=5,32

=1,86

В результате расчета получили: a=0,61087;b=-1,5761. В таблице 3.4 значения этих параметров находятся в ячейках А12 и В12. Следовательно, уравнение линейной регрессии имеет вид:

Функция ЛИНЕЙН выдает не только параметры уравнения регрессии, но и регрессионные статистики (критерии качества). Синтаксис функции: ЛИНЕЙН(известные значения у; известные значения х; константа; статистика). На место константы записывается логическая константа ЛОЖЬ, если b=0, и ИСТИНА в противоположном случае. Параметр статистика используется для получения регрессионных статистик, в этом случае следует ввести логическую константу ИСТИНА. Если требуется получить только параметры уравнения регрессии, то параметр статистика должен иметь значение ЛОЖЬ.

В таблице 3.5 показано размещение параметров уравнения регрессии и регрессионных статистик, выдаваемых функцией ЛИНЕЙН.

Как видно из таблицы 3.5, функция ЛИНЕЙН позволяет выполнять и многомерный линейный регрессионный анализ. Две последние строки таблицы введены для удобства анализа результатов расчета. t– статистика коэффициента уравнения регрессии равна отношению этого коэффициента к его стандартной ошибке, т.е. расчетная формула имеет вид: Критические значения статистик определяются по таблицам приложений 2 и 3 работы [10].

Таблица 3.5. Размещение информации, выдаваемой функцией ЛИНЕЙН

Наименование

Обозначение и последовательность расположения

Коэффициенты уравнения

линейной регрессии

Стандартные ошибки

коэффициентов уравнения

Коэффициент детерминации и

стандартная ошибка для У

Критерий Фишера и число

степеней свободы

Полная и остаточная дисперсии

- статистика коэффициентов

Критические значения статистик

В. С помощью инструмента Регрессия пакета анализа

  1. Установить курсор на свободную ячейку, войти в меню Сервис, выбратьАнализ данных и затем инструментРегрессия.

  2. В диалоговом окне инструмента Регрессия необходимо заполнить поля:

Выходная информация инструмента «Регрессия» для данных примера 3.3 представлена в таблице 3.7. Эта таблица содержит все параметры и оценки качества модели регрессии. Единственное неудобство – названия и обозначения некоторых показателей не совпадают с принятыми в данном курсе. Для установления соответствия в таблице 3.6 приведены названия, принятые в MSExcel, и в скобках даны соответствующие пояснения.

Таблица 3.6. Выходная информация инструмента Регрессия

ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный(коэффициент множественной корреляции)

0,885

- квадрат (коэффициент множественной детерминации)

0,784

Нормированный - квадрат (откорректированный коэффициент множественной детерминации)

0,757

Стандартная ошибка (стандартное отклонение результата )

0,767

Наблюдения (объем выборки n)

10

Дисперсионный анализ

df (число степеней свободы)

SS (сумма квадратов отклонений)

MS (дисперсия)

F (расчетное значение F-критерия)

Регрессия

1

17,165

17,165

29,127

Остаток

8

4,714

=0,589

ИТОГО

9

21,88

Коэффи

циенты

(параметры регрессии )

Стандарт

ная ошибка (стандарт

ное отклоне

ние парамет

ров )

-статистика (рас

чет

ное значе

ние )

Р- значе

ние

Ниж

ние 95% (ниж

няя граница довери

тельно

го интерва

ла для )

Верх

ние 95% (верх

няя граница довери

тельно

го интерва

ла для )

Y-пересе

чение

-1,5761

0,828

-1,901

0,093

-3,486

0,334

Признак X1

0,61087

0,113

5,396

0,0006

0,349

0,871

Признак XK

Инструмент Регрессия можно использовать для получения и оценки уравнений линейной парной и многомерной регрессии. Уравнения нелинейной регрессии с помощью этого инструмента получить нельзя.

Г. Путем построения линии тренда

  1. Построить точечную диаграмму с помощью мастера диаграмм.

  2. Щелкнуть на любой точке диаграммы, войти в меню Диаграмма и выбрать операциюДобавить линию тренда.

  3. В диалоговом окне Линия тренда щелкнуть на рисункеЛинейная, перейти на вкладкуПараметры, щелкнуть в поляхпоказывать уравнение на диаграмме ипоказывать на диаграмме величину достоверности аппроксимации.

  4. Щелкнуть на кнопке ОК.

Таблица 3.7. Выходная информация для примера 3.3

На рис.3.4 изображена линия тренда, характеризующая зависимость затрат на ремонт от возраста оборудования.

Рис.3.4. Зависимость затрат на ремонт от возраста оборудования

Анализ результатов расчета показывает, что уравнения парной линейной регрессии, полученные различными способами, идентичны.

Пример 3.4. Выполнить анализ парной корреляции между стоимостью 1м2 внутренней площади объектов коммерческой недвижимости и величиной физического износа по данным из приложения 2методических указаний к выполнению курсовой работы.

Результативный признак – стоимость 1м2внутренней площади недвижимости в $, факторный признак Х – величина физического износа в %.

Контроль исходной информации выявил , что в выборке имеется два выброса: магазин в центре города со средневзвешенным физическим износом 25,3% и стоимостью 1м2 площади 187$ и кафе в центре с износом 36,4% и стоимостью - 187,31$. Видимо, для этих объектов местоположение и функциональное назначение имеют гораздо большее значение по сравнению с износом.

Статистические характеристики, полученные в среде ЭТ с помощью мастера функций для выборки с учетом двух исключенных объектов, т.е. для выборки объемом 89 объектов:

= 24,95 %; = 97,24 $;

Следовательно, зависимость между признаками обратная; теснота связи – заметная (см. таблицу 4 работы [10]). Относительно невысокое значение коэффициента корреляции объясняется влиянием на значение стоимости 1м2площади рассматриваемой недвижимости, кроме физического износа, других ценообразующих факторных признаков.

Проверим гипотезу о том, что коэффициент корреляции отличен от нуля, т.е. выполняется условие где-критическое значение, устанавливаемое по таблице- распределения Стьюдента; расчетное значение–статистики определяется по формулам:

; (3.18)

. (3.19)

При уровне значимости = 0,05 и=89= 1,988, аСледовательно, гипотеза о равенстве нулю коэффициента корреляции отвергается.

Коэффициент детерминации , т.е. факторный признак (физический износ) только на 31% определяет изменение результативного признака (стоимости 1м2площади). Это объясняется влиянием на результативный признак других факторных признаков: местоположение, объемно-планировочные характеристики и др.

Пример 3.5.Получить уравнение регрессии стоимости 1м2площади объекта недвижимости на рыночную арендную плату за 1м2. Исходная информация приведена в таблице 3.8. Выполнить анализ качества полученной модели и определить точечный и интервальный прогноз.

Таблица 3.8. Исходная информация

Номер объекта

Стоимость 1м2, $

Месячная арендная плата за 1м2 без учета коммунальных платежей, $

1

78

2,5

2

80

2,6

3

90

2,8

4

92

2,9

5

85

3,0

6

88

3,0

7

92

3,2

8

90

3,3

9

93

3,3

10

93

3,5

11

97

3,5

12

99

3,6

13

94

3,7

14

100

3,8

15

105

4,0

Пусть по расположению точек корреляционного поля установлено, что теоретической линией регрессии будет прямая. Теоретическая линия регрессии показывает изменение средних значений результативного признака по мере изменения значений факторного признака Запишем уравнение парной линейной регрессии в виде

.

Получим уравнение регрессии с помощью инструмента «Регрессия» пакета анализа, выходная информация которого приведена в таблице 3.9.

Из итогов инструмента «Регрессия» выписываем значения:

Таблица 3.9. Выходная информация инструмента «Регрессия»

По таблицам определяем критические значения статистик при уровне значимости

Выполняем анализ качества полученной модели:

Так как коэффициенты регрессии и само уравнение статистически значимы, то данную модель можно использовать для прогнозирования.

При анализе статистической значимости уравнения регрессии возможны следующие случаи: