3.10. Методика получения уравнений парной линейной регрессии при большом объеме выборки
Если количество наблюдений велико, то для упрощения расчетов данные наблюдений принято группировать, т.е. строить корреляционную таблицу. Для примера рассмотрим методику получения уравнения парной линейной регрессии по данным примера 3.9
(3.42)
Корреляционную таблицу строят по сгруппированному (упорядоченному) интервальному ряду. В первой строке и первом столбце таблицы указывают границы разрядов для , а также их середины. В ячейки, расположенные на пересечении строк и столбцов, заносят частоты попадания пар значенийв соответствующие разряды корреляционной таблицы 3.21. Эти частоты обозначают. Суммыпо соответствующим столбцам и строкам обозначаютиПроверка правильности заполнения корреляционной таблицы:
(3.43)
где - количество разрядов факторного признакаи результативного признака
Таблица 3.21. Корреляционная таблица
0,18-0,246 | 0,246-0,312 | 0,312-0,378 | 0,378-0,444 | 0,444-0,51 | |||
0,213 | 0,279 | 0,345 | 0,411 | 0,477 | |||
3,78- 5,23 | 4,505 | 1 |
|
| 3 | 1 | 5 |
5,23-6,68 | 5,955 |
| 2 | 7 | 3 | 3 | 15 |
6,68-8,13 | 7,405 |
| 6 | 1 | 1 |
| 8 |
8,13-9,58 | 8,855 | 3 | 8 |
|
|
| 11 |
9,58-11,03 | 10,305 | 1 | 1 |
| 1 |
| 3 |
| 5 | 17 | 8 | 8 | 4 | 42 |
Для упорядочения информации определяем минимальные и максимальные значения исследуемых признаков, устанавливаем количество разрядов по каждому признаку и вычисляем длину разрядов. Так как в данном случае объем выборки сравнительно небольшой то принимаем количество разрядовДлина разрядов определяется по формулам:
Поясним порядок заполнения корреляционной таблицы по исходным данным исследуемых признаков, приведенным в таблице 3.22. Данные второй строки этой таблицы, т.е. первое совместное появление , дают одно значение для ячейки корреляционной таблицы, расположенной на пересечении первого столбца и четвертой строки. Данные третьей строки таблицы 3.22 - первое совместное появлениедля ячейки, расположенной на пересечении четвертого столбца и пятой строки, и т.д.
Таблица 3.22. Данные наблюдений
По расположению частот совместного появления признаков можно предположить, что между наблюдается отрицательная корреляция (см. рис.3.2).
Расчетные формулы:
(3.44)
Проверка на тесноту связи: (3.45)
Доверительные границы для уравнения регрессии определяются по выражению
(3.46)
где - соответственно остаточное стандартное отклонение и критическое значение критерия Стьюдента. Остаточная дисперсия считается по формуле (3.47), где- среднее значениев рассматриваемом разряде
(3.47) Таблица 3.23. Результаты расчета
Рис. 3.10. Доверительный интервал для линии регрессии
Так для первого разряда по таблице 3.21 имеем
Результаты расчета представлены в таблице 3.23 и на рис.3.10, запись расчетных формул на языке ЭТ – в таблице 3.24.
Таблица 3.24. Расчетные формулы
Адрес ячейки | Формула | Запись на языке ЭТ |
J3 | =СУММ(e3:i3) | |
K3 | =d3*j3 | |
L3 | =d3*k3 | |
M3 | =d3*СУММПРОИЗВ($e$1:$i$1;e3:i3) | |
E8 | =СУММ(e1:e7) | |
E9 | =e1*e8 | |
E10 | =e1*e9 | |
J8 | =СУММ(j3:j7) | |
J9 | =СУММ(e9:i9) | |
J10 | =СУММ(e10:i10) | |
E11 | =j9/j8 | |
E12 | =k8/j8 | |
K8 | =СУММ(k3:k7) | |
L8 | =СУММ(L3:L7) | |
M8 | =СУММ(m3:m7) | |
G11 | Dx | =j10/j8-e11^2 |
G12 | Dy | =L8/j8-e12^2 |
I11 | =КОРЕНЬ(g11) | |
I12 | =КОРЕНЬ(g12) | |
K11 | =m8/j8-e11*e12 | |
K12 | =k11/(i11*i12) | |
M11 | =k12*i12/i11 | |
M12 | =e12-m11*e11 | |
E13 | =СУММПРОИЗВ($d$3:$d$7;e3:e7)/e8 | |
E14 | =$m$12+$m$11*e1 | |
E15 | =e13-e14 | |
E16 | =e15^2*e8 | |
K14 | t | 2,02 (из таблицы) |
J16 | =СУММ(e16:i16) | |
K16 | =КОРЕНЬ(j16/40) | |
L14 | =k14*k16 | |
L16 | =ABS(k12)*КОРЕНЬ(41) | |
E17 | - | =e$14-$L$14 |
E18 | + | =e$14+$L$14 |
Примечания.
Для рассматриваемого примера
Под в расчетных формулах понимаетсясоответственно.
- Министерство образования и науки украины
- Третий модуль Тема 3. Корреляционно-регрессионный анализ данных наблюдений
- Последовательность проведения корреляционно-регрессионного анализа
- Введение в тему
- Последовательность проведения корреляционно-регрессионного анализа
- 3.2. Проверка данных статистического наблюдения на наличие выбросов
- 3.3. Общие сведения из корреляционно-регрессионного анализа
- 3.4. Форма корреляционной связи
- 3.5. Теснота корреляционной связи
- Проверка на тесноту связи
- 3.6. Сила корреляционной связи
- 3.7. Методикаполученияуравнений линейной регрессии в случае малых выборок Последовательность проведения регрессионного анализа
- Технологияопределения в среде эт коэффициентовлинейнойрегрессии в случае малых выборок
- Прогнозирование на основе полученной модели регрессии
- 3.8. Понятие о многомерном корреляционном анализе
- Определение Для расчета используем ту же матрицу третьего порядка. Расчет ведем по формуле:
- Коэффициент множественной корреляции
- 3.9. Создание математических моделей регрессии
- Парный нелинейный регрессионный анализ
- Экономический смысл коэффициентов регрессии
- Многомерный нелинейный регрессионный анализ
- 3.10. Методика получения уравнений парной линейной регрессии при большом объеме выборки
- 3.11. Понятие о мультиколлинеарности
- Тесты для самоконтроля
- Характеристика тестов темы 3:
- Контрольные задания