Последовательность проведения корреляционно-регрессионного анализа
Проверка данных статистического наблюдения на наличие выбросов
Общие сведения из корреляционно-регрессионного анализа
Форма корреляционной связи
Теснота корреляционной связи
Сила корреляционной связи
Методика получения уравнений линейной регрессии в случае малых выборок
Понятие о многомерном корреляционном анализе
Создание математических моделей регрессии
Методика получения уравнений парной линейной регрессии при большом объеме выборки
Понятие о мультиколлинеарности
Литература
Математическая статистика: Учебник/В.М. Иванова, В.Н. Калинина, Л.А.Нешумова и др. – М.: Высш. шк., 1981. – 371 с.
Дубров А.М., Мхитарян В.С., Трошин Л.И. Многомерные статистические методы для экономистов и менеджеров: Учебник. – М.: Финансы и статистика, 2000. – 352 с.
Сивец С.А. Статистические методы в оценке недвижимости и бизнеса. Учебно-практическое пособие по статистике для оценщиков. – Запорожье, 2001. – 320 с.
Уотшем Т. Дж., Паррамоу К. Количественные методы в финансах: Учеб. пособие/Пер. с англ. Под ред. М.Р. Ефимовой. – М.: Финансы, ЮНИТИ, 1999. –527 с.
Савицкая Г.В. Анализ хозяйственной деятельности предприятия. - Минск: ООО “Новое знание”, 2000. – 668 с.
Львовский Е.Н. Статистические методы построения эмпирических формул. – М.: Высш. шк. , 1988. – 239 с.
Карлберг Конрад. Бизнес-анализ с помощью Excel:пер. с англ. – К.: Диалектика, 1997. – 448 с.
Ершова Н.М., Ершов В.И., Беликов А.С., Андрющенко О.Н. Лабораторный практикум по компьютерным технологиям реализации математических методов управления производством. – Днепропетровск: ПГАСА, 2001. – 62 с.
Ершова Н.М., Ершов В.И., Беликов А.С., Андрющенко О.Н. Задания к лабораторному практикуму. – Днепропетровск: ПГАСА, 2001. – 42 с.
Ершова Н.М. Реализация в среде электронных таблиц методов корреляционно-регрессионного анализа и прогнозирования. – Днепропетровск: ПГАСА, 2002. – 50 с.
Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике: Учебник. – М.: МГУ им. М.В. Ломоносова, Издательство «ДИС», 1997. – 368 с.
Деминенко Е.З. Линейная и нелинейная регрессия. – М.: Финансы и статистика, 1981. – 302 с.
Ферстер Э., Ренц Б. Методы корреляционного и регрессионного анализа: Руководство для экономистов. – М.: Финансы и статистика, 1983. – 302 с.
Четыркин Е.М. Статистические методы прогнозирования. – М.: Статистика, 1977. –200 с.
Теория статистики: Учебник/Под ред. Проф. Р.А. Шмойловой. – М.: Финансы и статистика, 2002. – 560 с.
- Министерство образования и науки украины
- Третий модуль Тема 3. Корреляционно-регрессионный анализ данных наблюдений
- Последовательность проведения корреляционно-регрессионного анализа
- Введение в тему
- Последовательность проведения корреляционно-регрессионного анализа
- 3.2. Проверка данных статистического наблюдения на наличие выбросов
- 3.3. Общие сведения из корреляционно-регрессионного анализа
- 3.4. Форма корреляционной связи
- 3.5. Теснота корреляционной связи
- Проверка на тесноту связи
- 3.6. Сила корреляционной связи
- 3.7. Методикаполученияуравнений линейной регрессии в случае малых выборок Последовательность проведения регрессионного анализа
- Технологияопределения в среде эт коэффициентовлинейнойрегрессии в случае малых выборок
- Прогнозирование на основе полученной модели регрессии
- 3.8. Понятие о многомерном корреляционном анализе
- Определение Для расчета используем ту же матрицу третьего порядка. Расчет ведем по формуле:
- Коэффициент множественной корреляции
- 3.9. Создание математических моделей регрессии
- Парный нелинейный регрессионный анализ
- Экономический смысл коэффициентов регрессии
- Многомерный нелинейный регрессионный анализ
- 3.10. Методика получения уравнений парной линейной регрессии при большом объеме выборки
- 3.11. Понятие о мультиколлинеарности
- Тесты для самоконтроля
- Характеристика тестов темы 3:
- Контрольные задания