logo
Мат_моделир_2015_заоч_ЭП_ФИН / Мат_мод_лекции

3.3. Общие сведения из корреляционно-регрессионного анализа

Приведем пример корреляционной связи в области экономики. Себестоимость продукции зависит от объема производства. Известно, что предприятия с одинаковым объемом производства имеют различную себестоимость продукции. Кроме того, даже на одном предприятии наблюдается рассеивание значений себестоимости при фиксированном объеме производства. Это связано с тем, что в экономике действует сложный комплекс многочисленных взаимно переплетающихся причин. Так, на себестоимость влияют еще другие факторы: потери от брака, ассортимент продукции, технология производства, используемое сырье, структура цен и др., включая случайные факторы. Существует тенденция: чем больше объем производства, тем больше полная себестоимость. Но эта тенденция проявляется только при большом объеме выборки. В единичном случае может оказаться, что предприятие А с более высоким объемом производства по сравнению с предприятием В имеет более низкую полную себестоимость продукции.

Во время статистических наблюдений для каждого объекта часто можно измерить (получить) значения нескольких признаков. В итоге получается многомерная выборка. Смысл обработки многомерных выборок заключается в установлении связи между признаками. Связь может быть функциональной, при которой определенному значению факторного признака соответствует одно и только одно значение результативного признака. Если зависимость проявляется не в каждом отдельном случае, а в среднем при большом числе наблюдений, то она называетсястатистической (стохастической). Частным случаем статистической связи являетсякорреляционная связь, при которой изменение среднего значения результативного признака вызвано изменением факторных признаков.

Корреляционная зависимость проявляется достаточно отчетливо при большом числе наблюдений (закон больших чисел). Требования к исходной информации в соответствии с методологией корреляционного анализа:

Для глубокого и всестороннего изучения статистических связей используются понятия корреляция и регрессия. Все основные положения теории корреляции и регрессии разработаны с учетом предположения о нормальном законе распределения исследуемых признаков. Признак, который не подчиняется нормальному закону распределения, не включается в математическую модель. Выдвинуть гипотезу о том, что случайная величина подчиняется нормальному закону распределения, можно по виду гистограммы и по значению числовых характеристик. Если близки по значению оценки выборочного среднего, моды и медианы, а оценки асимметричности и эксцесса незначительно отличаются от нуля, то случайная величина подчиняется нормальному закону распределения.

Методология корреляции позволяет с помощью определенных показателей установить степень связанности или меру зависимости двух или более признаков. Например, по коэффициенту корреляции установить тесноту связи результативного и одного факторного признаков. Методологиярегрессии позволяет определить одностороннюю статистическую зависимость с помощью функции, называемой, в отличие от строго функциональной,функцией регрессии. Таким образом, корреляционный анализ оценивает силу статистической связи, а регрессионный анализ – форму этой связи.

Задачи корреляционного анализа:

Задачи регрессионного анализа: