logo search
Методичка Интегралы

Определенный интеграл

Определенный интеграл (Римана) позволяет распространить формулу площади прямоугольника на площадь более или менее произвольной плоской геометрической фигуры. В основе понятия определенного интеграла лежит так называемая интегральная сумма, определяемая следующим образом.

Пусть функция y = f(x) определена на отрезке [a,b]. Разобьем отрезок [a,b] на n частей [x0,x1], [x1,x2], …, [xn1,xn] (x0 = a, xn = b) произвольным образом. В частности, можно разбить [a,b] на n равных частей, тогда длина каждого отрезка разбиения будет равна . В общем случае, пусть . Возьмем опять же произвольным образом внутри каждого из отрезков [xi1,xi] по точке . Интегральной суммой функции на [a,b] по разбиению τ = (n, x0, x1, ..., xn, , …, ) называется число

.

y

y = f(x)

a xi−1 i xi b x

Если , то интегральная сумма есть площадь фигуры, состоящей из прямоугольников со сторонами ( ) и , i = 1, ..., n. Интуитивно ясно, что чем меньше максимальная длина отрезков разбиения , тем точнее эта фигура из прямоугольников приближает криволинейную трапецию с основаниями x = a, x = b и «боковыми сторонами» y = f(x), y = 0. Интеграл от f(x) по отрезку [a,b] есть предел от I(τ) по всевозможным разбиениям τ, когда 0. Предел понимается здесь в обычном смысле: число I называется определенным интегралом от f(x) по [a,b] (и обозначается как ), если для произвольного > 0 найдется такое >0, что, как только разбиение τ отрезка [a,b] удовлетворяет условию , интегральная сумма , отвечающая этому разбиению, отличается от I не больше, чем на

Геометрический смысл определенного интеграла заключается в том, что есть (с точностью до знака) площадь криволинейной трапеции, заключенной между графиком функции y = f(x), осью абсцисс и прямыми x = a, x = b. В частности, если на отрезке [a,b] заданы две функции f(x) и g(x), , то площадь криволинейной трапеции, заключенной между графиками этих двух функций, равна

y

y=f(x)

y=g(x)

a b x

Связь между определенным и неопределенным интегралом заключена в форуме Ньютона–Лейбница:

,

где F(x) – произвольная первообразная функции f(x). Разность значения функции F(х) в двух точках a и b принято обозначать так: . Справедливы следующие две формулы – замена переменной интегрирования и интегрирование по частям.