Свойства дизъюнкции, конъюнкции и отрицания (теорема 4.3).
Особая роль двух функций (из этих трех) определяется тем обстоятельством, что определение этих функций легко может быть перенесено на любое число переменных:
Конъюнкцией n переменных f (x1, x2, …, xn) = x1 x2…xn называется функция, которая принимает значение 1, если и только если все переменные равны 1 (и, значит, равна 0, если хотя бы одна из этих переменных равна 0).
Дизъюнкцией n переменных f (x1, x2, …, xn) = x1Ú x2Ú … Ú xn называется такая функция, которая равна 0 если и только если все переменные равны 0 (и, значит, равна 1 тогда и только тогда, когда хотя бы одна переменная равна 1).
Из этих определений видно, что конъюнкция и дизъюнкция коммутативны, т. е. обе функции не зависят от порядка переменных.
Будем обозначать через (x1, x2, … , xn) новую функцию, которая на наборе переменных x1, x2, …, xn принимает значение, противоположное f(x1, x2, …, xn).
Заметим, что в перечисленных далее свойствах в роли x, y, z может выступать любая логическая функция. Все свойства легко могут быть доказаны из приведенных выше определений этих функций.
1. Универсальные границы:
xЪ1 = 1; xЪ 0 = х; х1 = х; х0 = 0.
2. Ассоциативность конъюнкции и дизъюнкции:
x(yz) = (xy)z; xЪ (yЪ z) = (x Ъy)Ъ z.
Это свойство означает, что в конъюнкции или дизъюнкции нескольких переменных можно как угодно расставлять скобки (а значит, можно вообще их не ставить).
3. Поглощение (“целое поглощает часть”):
хЪ ху = х(1Ъ у) = х.
4. Два распределительных закона:
х (yЪ z) = x y Ъ x z; хЪ (y z) = (xЪ y)(xЪ z),
оба свойства могут быть доказаны простым рассуждением (например, если х = 0, тогда по свойству 1 справа выражение равно 0 и слева тоже 0, если х = 1, то справа стоит yЪ z и слева будет то же самое).
5. Правила де Моргана:
оба эти правила обобщаются на любое число переменных:
6. Правило Блейка:
Пусть К1 и К2 – какие-то логические функции, тогда
что легко доказывается справа налево:
Следствием правила Блейка являются два правила обобщенного поглощения:
Заметим, что правила Блейка и следствия из него часто используются для упрощения дизъюнкции (см. разд. 5)
Замечание. Конъюнкция, дизъюнкция, отрицание были определены для объектов, принимающих лишь два значения 0 и 1. Однако бывают случаи, когда можно ввести такие операции для некоторых других объектов (эти операции также называют иногда конъюнкцией, дизъюнкцией и отрицанием), для которых также выполнены свойства 1–6. В этом случае говорят, что на этих объектах введена булева алгебра.
Например, пусть W – некоторое множество точек (или элементарных событий в теории вероятности), В – множество подмножеств из W . Если A, B принадлежат В , то можно ввести сумму множеств (дизъюнкцию) A+B = AЪ B (равную объединению точек из А и В), произведение множеств (конъюнкцию) АВ = АЩ В (равное набору точек, входящих и в А, и в B одновременно) и дополнение (отрицание А), т. е. – множество точек из W , не входящих в А. Тогда для этих операций (и это легко проверить) будут выполнены свойства 1–6. Таким образом, множество всех подмножеств из W является булевой алгеброй.
- Универсальное множество: Универсальное множество (универсум) — множество, содержащее все мыслимые объекты. Упорядоченное множество — множество, на котором задано отношение порядка.
- Множество. Способы задания множеств (перечислением или списком, порождающей процедурой, описанием характеристического свойства). Привести примеры.
- Объединение более чем двух множеств. Пусть дано семейство множеств Тогда его объединением называется множество, состоящее из всех элементов всех множеств семейства:
- Алгебра множеств. Законы алгебры множеств. Доказать один из законов алгебры множеств.
- Множество. Мощность множества. Нахождение мощности объединения множеств (для двух множеств, для трех множеств, для n-множеств). Привести пример.
- Векторы. Прямое произведение множеств. Мощности прямого произведения множеств.
- Отношения. Основные понятия отношений (отношения; унарные, бинарные, n-местные отношения)
- Отношения. Бинарные отношения. Основные понятия (определение, обозначения, область определения, область значений, способы задания бинарных отношений). Привести примеры.
- Способы задания бинарных отношений
- Отношения. Свойства бинарных отношений (рефлексивность, антирефлексивность, симметричность, антисимметричность, транзитивность). Привести примеры.
- Переключательные (булевы) функции. Происхождение булевых функций.
- Булевы функции от одного аргумента. (Определение. Все булевы функции от одного аргумента).
- Булевы функции от двух аргументов (Определение булевой функции двух аргументов, тождественный ноль, тождественная единица, конъюнкция, штрих Шеффера, дизъюнкция, стрелка Пирса (функция Вебба)).
- Свойства дизъюнкции, конъюнкции и отрицания (теорема 4.3).
- Свойства эквиваленции, импликации и отрицания (теорема 4.4).
- Выражение одних булевых функций через другие (теорема 4.5).
- Булевы функции от n аргументов (определение, равенство булевых функций, суперпозиция булевых функций). Булевы функции от n переменных
- Булевы функции и формулы алгебры высказываний.
- Нормальные формы булевых функций.
- Применение булевых функций к релейно-контактной схеме. Две основные задачи теории релейно-контактных схем.
- Релейно-контактные схемы в эвм. Двоичный полусумматор. Одноразрядный двоичный сумматор.
- Графы. Основные понятия и определения (вершины, ребра, петли, кратность ребра, псевдограф, мультиграф, граф, орграф, неориентированный граф). Привести примеры.
- Графы. Матричное задание графов. Матрица смежности, матрица инцидентности. Привести примеры.
- Графы. Свойства матрицы смежности и инцидентности. Утверждение о числе всех путей (маршрутов) длины k из одной вершины в другую. Утверждение о наличие хотя бы одного контура.
- Графы. Связность. Компоненты связности. (Достижимость вершины, связный (сильно связный орграф) граф, слабо связанный, несвязанный, компонента связности (сильной связности)). Привести примеры.
- Графы. Матрицы связности. Утверждение о матрицах связности, матрицы достижимости, матрицы сильной связности.
- Графы. Поиск путей (маршрутов) с минимальным числом дуг (ребер). Алгоритм фронта волны.
- Графы. Минимальные пути (маршруты) в нагруженных орграфах (графах). Алгоритм Форда-Беллмана.