Множество. Способы задания множеств (перечислением или списком, порождающей процедурой, описанием характеристического свойства). Привести примеры.
Ответ:
под множеством понимается, совокупность каких либо объектов произвольной природы, обладающая некоторым общим признаком.
А) Множество может быть задано перечислением всех его элементов или списком. В этом случае элементы множества записывают внутри фигурных скобок, например: А = { 1, 2, a, x } или B = { река Нил, город Москва, планета Уран}.
Б) Множество может быть задано описанием свойств его элементов. Чаще всего при этом используют запись A = { xP( x ) }, которую читают следующим образом: "A есть множество элементов x таких, что для них выполняется свойство P( x )". Например, B = { x x- натуральное число, меньшее 10 }, при этом, очевидно, B = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }.
В) Множество можно задать порождающей процедурой, например:
D = { z1 D,и если z D,то z + 3 D},
E = { x x = 3k, k любое нартуральное число.}
Г) Графически: с помощью диаграмм Эйлера-Венна.
Операции над множествами (объединение, пересечение, разность, симметрическая разность, дополнение). Диаграммы Венна. Изобразить с помощью диаграмм Эйлера-Венна операции над множествами. Привести примеры.
Ответ:
Объединение Объедине́ние мно́жеств — множество, содержащее в себе все элементы исходных множеств. Объединение двух множеств A и B обычно обозначается , но иногда можно встретить запись в виде суммы A + B. Если множества A и B не пересекаются: , то их объединение обозначают также: . Объединение двух множеств
Пусть даны два множества A и B. Тогда их объединением называется множество
Yandex.RTB R-A-252273-3- Универсальное множество: Универсальное множество (универсум) — множество, содержащее все мыслимые объекты. Упорядоченное множество — множество, на котором задано отношение порядка.
- Множество. Способы задания множеств (перечислением или списком, порождающей процедурой, описанием характеристического свойства). Привести примеры.
- Объединение более чем двух множеств. Пусть дано семейство множеств Тогда его объединением называется множество, состоящее из всех элементов всех множеств семейства:
- Алгебра множеств. Законы алгебры множеств. Доказать один из законов алгебры множеств.
- Множество. Мощность множества. Нахождение мощности объединения множеств (для двух множеств, для трех множеств, для n-множеств). Привести пример.
- Векторы. Прямое произведение множеств. Мощности прямого произведения множеств.
- Отношения. Основные понятия отношений (отношения; унарные, бинарные, n-местные отношения)
- Отношения. Бинарные отношения. Основные понятия (определение, обозначения, область определения, область значений, способы задания бинарных отношений). Привести примеры.
- Способы задания бинарных отношений
- Отношения. Свойства бинарных отношений (рефлексивность, антирефлексивность, симметричность, антисимметричность, транзитивность). Привести примеры.
- Переключательные (булевы) функции. Происхождение булевых функций.
- Булевы функции от одного аргумента. (Определение. Все булевы функции от одного аргумента).
- Булевы функции от двух аргументов (Определение булевой функции двух аргументов, тождественный ноль, тождественная единица, конъюнкция, штрих Шеффера, дизъюнкция, стрелка Пирса (функция Вебба)).
- Свойства дизъюнкции, конъюнкции и отрицания (теорема 4.3).
- Свойства эквиваленции, импликации и отрицания (теорема 4.4).
- Выражение одних булевых функций через другие (теорема 4.5).
- Булевы функции от n аргументов (определение, равенство булевых функций, суперпозиция булевых функций). Булевы функции от n переменных
- Булевы функции и формулы алгебры высказываний.
- Нормальные формы булевых функций.
- Применение булевых функций к релейно-контактной схеме. Две основные задачи теории релейно-контактных схем.
- Релейно-контактные схемы в эвм. Двоичный полусумматор. Одноразрядный двоичный сумматор.
- Графы. Основные понятия и определения (вершины, ребра, петли, кратность ребра, псевдограф, мультиграф, граф, орграф, неориентированный граф). Привести примеры.
- Графы. Матричное задание графов. Матрица смежности, матрица инцидентности. Привести примеры.
- Графы. Свойства матрицы смежности и инцидентности. Утверждение о числе всех путей (маршрутов) длины k из одной вершины в другую. Утверждение о наличие хотя бы одного контура.
- Графы. Связность. Компоненты связности. (Достижимость вершины, связный (сильно связный орграф) граф, слабо связанный, несвязанный, компонента связности (сильной связности)). Привести примеры.
- Графы. Матрицы связности. Утверждение о матрицах связности, матрицы достижимости, матрицы сильной связности.
- Графы. Поиск путей (маршрутов) с минимальным числом дуг (ребер). Алгоритм фронта волны.
- Графы. Минимальные пути (маршруты) в нагруженных орграфах (графах). Алгоритм Форда-Беллмана.