logo search
Пособие по Основам ДМ 4

Упражнения

    1. Укажите смысловые связки естественного языка, соответствующие основным операциям над множествами: дополнение (– НЕ), объединение (сумма) (– ИЛИ), пересечение (произведение) (– И), разность (– БЕЗ).

    2. Пусть множество сотрудников некоторого предприятия; множество всех сотрудников старше 40 лет; множество сотрудников, имеющих стаж более 10 лет; множество служащих; множество рабочих. Каков содержательный смысл каждого из нижеследующих множеств? Изобразить графически (с помощью диаграмм Эйлера – Венна) эти множества.

      1) ;

      5) ;

      9) ;

      2) ;

      6) ;

      10) ;

      3) ;

      7) ;

      11) ;

      4) ;

      8) ;

      12) .

    3. Заданы множества А = {1, 5, 7, 9, 12} , B = {5, 7, 9, 11, 13} и С = {1, 2, 3, 8, 10}, являющиеся подмножеством универсального множества U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Найти следующие множества и их мощности:

      1) ;

      5) ;

      2) ;

      6) ;

      3) ;

      7) ;

      4) ;

      8) .

    4. По заданным промежуткам А и B на числовой оси определить ; ; ; ; .

1) и ; 3) и ;

2) и ; 4) и

    1. Задана система множеств , , , …, . Найти и .

    2. Задана система множеств .

Найти и .

    1. Пусть А и В – произвольные подмножества универсального множества I. Доказать графически, что:

1) ; 4) ;

2) ; 5) ;

3) ; 6) .

    1. Доказать (аналитически), что .

Указание: воспользоваться тождеством .

    1. Существуют ли такие множества А, В и С, что , и ?

Указание: построить диаграмму Эйлера – Венна.

11. Построить из множества А, В и С результат операций над ними. {1, 2, 3}, {1, 3, 5}, {2, 3, 4, 6}.

1) ; 2) .

12. Пусть Множества А, В, С пересекаются в наиболее общем случае. Изобразить на диаграмме Эйлера Результат следующих действий:

1) ; 2) ; 3) ; 4) .

  1. Пусть и  промежутки на числовой оси. Найти ; ; ; ; .

  2. Пусть А, В и С – множества такие, что . Можно ли сделать вывод, что В = С ?

  3. Указать, какие из следующих равенств верны для любых множеств; верны для некоторых множеств; неверны или бессмысленны. Привести обоснование.

1)

;

5)

;

2)

;

6)

;

3) 

;

7)

;

4) 

;

8)

.