1.2. Векторы и прямые произведения множеств. Проекция вектора на ось
Вектор – это упорядоченный набор элементов (“кортеж”). Его элементы зазываются координатами или компонентами вектора.
Длина (размерность) вектора – число координат вектора.
В отличие от элементов множества, его координаты могут совпадать. Обозначение вектора: в круглых скобках, координаты – через запятую (0, 5, 4, 5, 0, 1). Иногда скобки и даже запятые опускаются.
Векторы длины 2 называют упорядоченными парами; длины 3 – тройками; и т.д., длины n – n-ками.
Два вектора равны, если они имеют одинаковую длину, и соответствующие координаты равны, т. е. , если и , , …, .
Прямым произведением множеств А и В (обозначается А В) называется множество всех (упорядоченных) пар (a, b) таких, что и . В частности, если А = В, то обе координаты принадлежат А (обозначение ).
Прямое произведение n множеств (обозначается ) называется множеством всех векторов , длины n таких, что , , ..., .
.
Пусть А – конечное множество, элементами которого являются символы (буквы, цифры, знаки препинания, знаки операций и т. д.). Такие множества обычно называют алфавитом.
Слова длины n в алфавите А – это элементы множества . Множество всех слов в алфавите А – это множество
Здесь слово определено как вектор. При написании слова не принято пользоваться разделителями: скобками, запятыми; они могут оказаться символами самого алфавита. Поэтому слово в алфавите обозначается как конечная последовательность символов из алфавита А.
Примеры:
1) Десятичное число – слово в алфавите цифр {0, 1, 2, 3, ... , 9}.
2) Текст, отпечатанный на машинке – слово в алфавите, определяемом клавиатурой этой машинки.
Теорема (о мощности прямого произведения множеств).
Пусть конечные множества и , , ... , . Тогда мощность множества равна произведению мощностей множеств :
.
Следствие: .
Эта теорема и ее следствие лежат в основе очень многих комбинаторных фактов.
Проекцией вектора длины n на i-ю ось называется его i-я координата (обозначение: ) .
Проекцией вектора на оси с номерами называется вектор длины k (обозначение: ).
Пусть V – множество векторов одинаковой длины.
Проекцией множества векторов V на i-ось называется множество проекций всех векторов из V на i-ось: (обозначение: .
Проекция множества векторов V на оси с номерами :
.
В частности, если , то = .
В общем случае вовсе не обязательно прямое произведение, оно может быть и подмножеством.
Примеры:
1) Проекция точки плоскости на 1-ю ось – абсцисса, на 2-ю ось – ордината.
2) Дано множество векторов ;
,
,
,
, ,
.
3) . Чему равна ? Ее найти нельзя, так как заданное множество V- множество векторов разной длины, в отношении которых никаких определений не было сделано.
- Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «кемеровский государственный университет»
- Кафедра автоматизации исследований
- И технической кибернетики
- Дискретная математика
- Содержание
- Глава 1. Теория множеств. Дискретная теория вероятности......5
- Глава 2. Теория графов.....................................................................53
- Глава 3. Дискретные структуры: конечные автоматы, коды...76
- Глава 4. Алгебра логических функций..........................................88
- Глава 5. Логика высказываний и логика предикатов..............109
- Глава 6. Схемы переключателей. Комбинационные схемы...................................................................................................123
- Глава 1. Теория множеств. Дискретная теория вероятности
- Множества и операции над ними
- Упражнения
- 1.2. Векторы и прямые произведения множеств. Проекция вектора на ось
- Упражнения
- 1.3. Комбинаторика Правило суммы
- Правило произведения
- Число размещений без повторений
- Число размещений с повторениями
- Число перестановок без повторений
- Число сочетаний без повторений
- Упражнения
- 1.4. Введение в дискретную теорию вероятностей
- Свойства элементарных событий:
- Соотношения между событиями:
- Свойства операций над событиями:
- Упражнения
- 1.5. Соответствия и функции
- Взаимно однозначные соответствия и мощность множеств
- Упражнения
- 1.6. Отношения
- Способы задания бинарных отношений
- Свойства бинарных отношений
- Отношение эквивалентности
- Отношение порядка
- Лексико-графический порядок.
- Упражнения
- 1.7. Операции и алгебры
- Свойства бинарных алгебраических операций
- 1.8. Гомоморфизм и изоморфизм алгебр
- Полугруппы, группы, решетки
- Упражнения
- Глава 2. Теория графов
- 2.1. Основные определения, способы задания, основные классы, изоморфизм графов
- Способы задания графа
- Степени вершин графа
- Части, суграфы и подграфы
- Операции над частями графа
- Графы и бинарные отношения
- Упражнения
- Среди пар графов, изображенных на рисунке, указать пары изоморфных графов и пары неизоморфных графов. Ответ обосновать.
- Маршруты, цепи и циклы. Расстояния, диаметры, центры. Обходы. Разделяющие множества и разрезы
- Упражнения
- Деревья, их свойства. Характеристические числа графов. Сети
- Упражнения
- Глава 3. Дискретные структуры: конечные автоматы, коды
- 3.1. Машина Тьюринга
- Упражнения
- Основы теории кодирования
- Упражнения
- Глава 4. Алгебра логических функций
- 4.1. Основные определения
- Упражнения
- 4.2. Эквивалентные преобразования
- Упражнения
- 4.3. Дизъюнктивные и конъюнктивные нормальные формы
- Упражнения
- 4.4. Дизъюнктивные нормальные формы и импликанты
- Упражнения
- 4.5. Минимизация днф. Тупикова днф
- Упражнения
- 4.6. Алгебра Жегалкина
- Упражнения
- 4.7. Двойственность в алгебре логики. Самодвойственные функции
- Принцип двойственности
- Упражнения
- 4.8. Функциональная полнота систем
- Упражнения
- Глава 5. Логика высказываний и логика предикатов
- 5.1. Логика высказываний
- Алгебра логики
- Исчисление высказываний
- Упражнения
- 5.2. Логика предикатов
- Упражнения
- Глава 6. Схемы переключателей. Комбинационные схемы
- Схемы переключателей
- Комбинационные схемы
- Упражнения
- Литература
- 650043, Кемерово, ул. Красная, 6.