4 Семестр
Занятие 1. Примеры групп. Группы подстановок.
[5]: 8.1.17, 8.1.18.
[6]: 1634 16), 1634 21), 1634 26), 1635, 1636, 1651
[8]: ГЗ 7 А.
Занятие 2. Подгруппы. Операции над подгруппами.
[5]: 8.1.19, 8.1.20.
[6]: 1650, 1652.
[8]: ГЗ 7 В, ГЗ 8.
Занятие 3. Порядок элемента группы. Циклические группы.
[5]: 8.2.1, 8.2.2; 8.2.5, 8.2.6, 8.2.8, 8.2.10; 8.2.27, 8.2.28, 8.2.33, 8.2.46.
[6]: 1646, 1656.
[8]: ГЗ 7 Б, ИЗ 25.
Занятие 4. Теорема Кэли. Теорема Лагранжа.
[6]: 1637, 1645.
[8]: ГЗ 7 Д.
Занятие 5. Разложение группы по подгруппе. Фактор-группы.
[5]: 8.3.24, 8.3.25, 8.3.31, 8.3.32.
[6]: 1659, 1660, 1663; 1670; 1685.
[8]: ГЗ 10 АБВГ, ИЗ 24.
Занятие 6. Изоморфизм групп. Теорема об эпиморфизмах.
[5]: 8.2.45; 8.2.55 – 8.2.57; 8.2.61, 8.3.37, 8.3.38; 8.3.42, 8.3.43.
[6]: 1642, 1653; 1681, 1682; 1687; 1688, 1689.
[8]: ГЗ 7 Г, ГЗ 9, ГЗ 10 Д, ИЗ 26, ИЗ 27.
Занятие 7. Примеры и свойства колец и полей.
[5]: 8.4.6, 8.4.7, 8.4.10; 8.4.4.
[6]: 1732, 1733, 1738.
[8]: ГЗ 20.
Занятие 8. Свойства разностей и частных.
План-конспект курса, Т. 16.1.3 и Т. 16.1.7.
[8]: ИЗ 28
Занятие 9. Подкольца. Подполя.
[5]: 8.4.3.
[8]: ИЗ
Занятие 10. Свойства упорядоченных колец и полей.
План-конспект курса, Т. 16.4.3 – 16.4.5.
[8]: ГЗ 25, ИЗ 28.
Занятие 11. Доказательство числовых неравенств.
См. Приложение 2.2.
Занятие 12. Свойства дискретности N и Z.
См. приложение 2.3.
Занятие 13. Идеалы. Операции над идеалами.
[5]: 8.5.1, 8.5.3, 8.5.6, 8.5.8.
[6]: 1781; 1794 – 1796.
[8]: ИЗ 55.
Занятие 14. Фактор-кольца. Кольца классов вычетов.
[5]: 8.5.35, 8.5.36, 8.5.40, 8.5.41, 8.5.54.
[6]: 1792, 1793.
Занятие 15. Изоморфизм и эпиморфизм колец.
[5]: 8.5.55, 8.5.56.
[6]: 1745, 1746, 1749, 1751 – 1753, 1790.
[8]: ГЗ 22, ГЗ 23.
Занятие 16. Делимость в кольцах.
[6]: 1774.
[12]: C.72, №№ 4, 5, 7, 15, 17.
[8]: ГЗ 20.
Занятие 17. Кольца главных идеалов.
[5]: 8.8.10 – 8.8.13.
[12]: C. 85, №№ 3; 8, 10, 19, 21.
[8]: ИЗ 55.
Занятие 18. Евклидовы кольца.
[5]: 8.8.17, 8.8.18; 8.8.20, 8.8.22.
[8]: ГЗ 31, ИЗ 52, ИЗ 53.
- Алгебра и теория чисел, Избранные вопросы алгебры
- Пояснительная записка
- Содержание учебной дисциплины
- Тематический план курса «Алгебра и теория чисел»
- Тематический план курса «Избранные вопросы алгебры»
- Перечень практических занятий
- 1 Семестр
- 2 Семестр
- 3 Семестр
- 4 Семестр
- Тематика контрольных работ
- Критерии оценок знаний
- Перечень основных знаний, умений и навыков
- Рекомендации по организации самостоятельной работы студентов
- Рекомендуемая литература Основная литература
- Дополнительная литература
- Глава 1. Элементы теории множеств, математической логики, числовых систем
- § 1. Множества, элементы, подмножества
- § 2. Операции над множествами
- § 3. Декартово (прямое) произведение множеств. Бинарные отношения
- § 4. Отношения эквивалентности. Отношения порядка
- § 5. Функции
- § 6. Высказывания и предикаты. Логические операции. Формулы
- § 7. Отношения следования и равносильности
- § 8. Определение системы действительных чисел
- § 9. Система натуральных чисел. Принцип математической индукции
- § 10. Системы целых и рациональных чисел
- Глава 2. Основные алгебраические структуры
- § 1. Алгебраические операции. Алгебры. Алгебраические системы. Группы
- § 2. Подгруппы
- § 3. Кольца и поля
- § 4. Подкольца и подполя
- Глава 3. Системы линейных уравнений. Арифметическое n-мерное векторное пространство
- § 1. Решение систем линейных уравнений методом Гаусса
- § 2. Арифметическое n-мерное векторное пространство Pn
- § 3. Линейная зависимость и линейная независимость систем векторов
- § 4. Базис и ранг системы векторов
- § 5. Ранг матрицы
- § 6. Исследование системы линейных уравнений
- § 7. Однородные системы линейных уравнений
- Глава 4. Матрицы и определители
- § 1. Операции над матрицами
- § 2. Обратная матрица. Условие обратимости матрицы
- § 3. Перестановки и подстановки
- § 4. Определение определителя
- § 5. Свойства определителя
- § 6. Миноры и алгебраические дополнения. Разложение определителя по строке и по столбцу
- § 7. Формула для обратной матрицы. Теорема Крамера
- § 4. Связь между различными базисами конечномерных векторных пространств. Координаты вектора в разных базисах
- § 5. Подпространства векторного пространства
- § 6. Прямая сумма подпространств
- § 7. Линейные многообразия
- Глава 6. Евклидовы пространства
- § 1. Скалярное произведение. Определение, примеры, простейшие свойства евклидовых пространств. Длина вектора. Угол между векторами
- § 2. Ортогональность. Ортонормированная система векторов. Изоморфизм евклидовых пространств
- § 3. Ортогональное дополнение к подпространству. Ортогональная проекция вектора на подпространство. Процесс ортогонализации системы векторов
- Глава 7. Линейные отображения и линейные операторы
- § 1. Линейные отображения. Матрица линейного отображения
- § 2. Операции над линейными отображениями
- § 3. Ранг, дефект, ядро и образ линейного отображения
- § 4. Линейные операторы
- § 5. Линейные алгебры
- § 6. Собственные векторы и собственные значения линейного оператора
- Глава 8. Теория делимости целых чисел
- § 1. Отношение делимости. Деление с остатком
- § 2. Нод чисел. Алгоритм Евклида
- § 3. Взаимно простые числа
- § 4. Нок чисел
- § 5. Простые числа. Основная теорема арифметики
- Глава 9. Теория сравнений целых чисел
- § 1. Числовые сравнения
- § 2. Функция Эйлера.
- § 3. Полная и приведенная системы вычетов. Теоремы Эйлера и Ферма
- § 4. Решение сравнений с переменной
- § 5. Решение сравнений первой степени
- § 3. Геометрическое изображение комплексных чисел
- § 4. Тригонометрическая форма комплексного числа
- § 5. Комплексно сопряжённые числа
- § 6. Корни из комплексных чисел
- Глава 11. Кольцо многочленов от одной переменной
- § 1. Определение многочлена
- § 2. Многочленные функции
- § 3. Деление многочлена на двучлен х--a. Схема Горнера
- § 4. Корни многочлена. Число корней многочлена. Интерполяционные многочлены. Функциональное и алгебраическое равенство многочленов
- § 5. Кратные корни многочлена
- § 6. Кольцо многочленов над полем
- § 7. Неприводимые многочлены. Факториальность кольца многочленов над полем
- § 8. Производная многочлена
- § 9. Кольцо многочленов над факториальным кольцом
- Глава 12. Кольцо многочленов от нескольких переменных
- § 1. Кольцо многочленов от n переменных
- § 2. Лексикографическое (алфавитное) упорядочение многочлена от n переменных
- § 3. Симметрические многочлены
- Глава 13. Многочлены над основными числовыми полями
- § 1. Кольцо многочленов над полем комплексных чисел
- § 2. Кольцо многочленов над полем действительных чисел
- § 3. Многочлены над полем рациональных чисел
- Глава 14. Расширения числовых полей. Алгебраические числа
- § 1. Простое расширение р(a) поля р
- § 2. Последовательное (цепное) расширение поля. Расширение поля конечной совокупностью элементов
- § 3. Конечное расширение поля
- § 4. Алгебраические над полем р элементы
- § 5. Простота конечных расширений
- Глава 15. Группы
- § 1. Теорема о факторизации
- § 2. Алгебраические операции. Алгебры. Алгебраические системы. Изоморфизмы. Гомоморфизмы
- § 3. Определения, примеры, простейшие свойства групп
- § 4. Целые степени элемента группы. Порядок элемента группы. Циклические группы
- § 5. Подгруппы
- § 6. Теорема Кэли
- § 7. Разбиение группы по подгруппе. Теорема Лагранжа
- § 8. Нормальные подгруппы. Фактор-группы. Естественный эпиморфизм
- § 9. Гомоморфизмы и эпиморфизмы групп. Теорема об эпиморфизмах
- Глава 16. Кольца и поля
- § 1. Кольца и поля
- § 2. Подкольца и подполя
- § 3. Характеристика кольца с единицей
- § 4. Упорядоченные кольца и поля
- § 5. Свойства порядка натуральных, целых и рациональных чисел
- § 5. Идеалы коммутативных колец
- § 6. Сравнение по идеалу. Фактор-кольца
- § 6. Гомоморфизмы и эпиморфизмы колец. Теорема об эпиморфизмах
- Глава 17. Элементы теории делимости в целостных кольцах
- § 1. Отношение делимости в целостных кольцах.
- § 2. Разложение на простые множители в кольцах
- § 3. Кольца главных идеалов
- § 4. Евклидовы кольца
- Глава 4. Поле частных целостного кольца
- § 1. Определение и строение поля частных целостного кольца
- § 2. Существование поля частных целостного кольца
- 1. Использование теоремы о числе корней ненулевого многочлена
- 2. Доказательство неравенств
- 3. Дискретность порядка на множестве натуральных и целых чисел