Любое евклидово кольцо содержит 1.
Доказательство. Это следует из свойства I. Действительно, применим I к единичному идеалу. Тогда , откуда, в частности, следует, что при некотором . Докажем, что . Для любого получаем, что , то есть , то есть . Свойство доказано.
-
В евклидовом кольце любые 2 элемента и имеют НОД (наибольший общий делитель) , который представим в виде: , то есть НОД представим в виде линейной комбинации элементов и .
.
Доказательство. Рассмотрим множество . Это идеал (так как это сумма идеалов и ), это легко проверить непосредственно, то есть если взять любой элемент этого множества, умножить на любой элемент кольца, то снова попадаем в этот идеал.
Так как в евклидовом кольце любой идеал главный, то , следовательно такие, что и такие, что , то есть , так как — элементы идеала , то есть и , то есть — есть НОД.
-
В любом евклидовом кольце и тогда и только тогда, когда для некоторого обратимого элемента (то есть и ). В этом случае делится на и делится на .
Доказательство. Если и , то , откуда . Обратное утверждение очевидно, так как в этом случае из разложения вытекает, что .
-
Содержание
- По дискретной математике
- 0. Введение. Граф
- Виды графов
- Основная информация
- Матрицы
- 1. Сеть. Потоки в сети. Теорема Форда — Фалкерсона
- 2. Функция. Бинарное отношение. Тотальность, сюръективность, инъективность, биективность. Примеры Множество
- Бинарное отношение
- Свойства бинарных отношений на множестве
- Явное перечисление пар, определяющих бинарное отношение.
- Задание процедуры проверки.
- Задание матрицей смежности.
- Задание графом.
- Задание списком смежностей.
- Функция
- 3. Бинарное отношение. Свойства. Матрица смежности и граф отношения. Отношение эквивалентности. Примеры
- Отношение эквивалентности
- 4. Множество точек любой прямой имеет мощность континуума.
- 4. Алгебраическая структура. Полугруппа, моноид, группа. Примеры
- Полугруппа
- 5. Группа. Абелева группа. Аддитивная группа. Мультипликативная группа. Конечная группа. Таблица Кэли. Циклическая группа. Декартово произведение групп Группа
- Циклическая группа
- Декартово произведение групп
- 6. Группа подстановок. Симметрическая группа . Умножение подстановок. Нейтральный элемент. Обратная подстановка. Число элементов группы Группа подстановок
- 7. Цикл. Теорема о представлении подстановки в виде произведения независимых циклов. Транспозиция. Чётные и нечётные подстановки. Знакопеременная группа Цикл
- Гомоморфизм. Изоморфизм. Теорема Кэли
- 8. Кольцо. Свойства. Коммутативное кольцо. Делители 0. Область целостности. Примеры. Подкольцо. Единица кольца. Поле. Примеры Кольцо
- 9. Идеал. Главный идеал. Теорема об идеалах поля (только и ). Следствие об идеалах в кольце Идеал
- 10. Сравнения. Классы вычетов по модулю (по идеалу ). Свойства. Малая теорема Ферма. Функция Эйлера. Теорема Эйлера (теория чисел) Сравнения
- Свойства сравнений
- 11. Характеристика кольца. Теорема о характеристике кольца без делителей 0. Примеры. Кольцо классов вычетов. Примеры Характеристика кольца
- 12. Простой идеал. Необходимое и достаточное условие того, что идеал кольца — простой Простой идеал
- 13. Поле классов вычетов. Минимальное поле. Примеры Поле классов вычетов
- 14. Евклидово кольцо. Свойства (8 свойств). Примеры Евклидово кольцо
- Свойства евклидовых колец
- В евклидовом кольце все идеалы главные.
- Любое евклидово кольцо содержит 1.
- Если в евклидовом кольце ( делит ), но не делит , то .
- 15. Кольцо многочленов . Условия того, что кольцо — евклидово кольцо Кольцо многочленов
- 16. Приводимые и неприводимые многочлены в кольце . Примеры. Теорема о разложении в на произведение неприводимых множителей. Теорема Безу
- 17. Расширение поля (надполе). Теорема о том, что кольцо классов вычетов по модулю неприводимого многочлена есть поле. Степень расширения. Число элементов этого поля Расширение поля
- 18. Поле Галуа. Примеры полей Галуа как расширения полей. Таблицы сложения и умножения Поле Галуа
- Литература