1.7. Операции и алгебры
N-арная операция на множестве М – это функция типа
,
где n – арность операции. Операция замкнута относительно множества М по определению, т. е. операция над элементами множества М, и результат тоже элемент М.
Алгеброй называется множество, вместе с заданной на нем совокупностью операций , т. е. система
.
М – основное (несущее) множество (носитель алгебры) алгебры А.
Тип алгебры – вектор арностей операций.
Сигнатура – совокупность операций .
Множество называется замкнутым относительно n-арной операции на М, если
,
т. е. если значения на аргументе из принадлежат .
Если замкнуто относительно всех операций , алгебры М, то система
называется подалгеброй алгебры А (при этом рассматриваются как операции на ).
Примеры:
1. Алгебра – называется полем действительных чисел.
Обе операции бинарные, поэтому тип этой алгебры (2,2). Сигнатура .
Подалгеброй этой алгебры является, например, поле рациональных чисел.
2. Пусть . Определим на операции: – «сложение по модулю р», – «умножение по модулю р», следующим образом:
и ,
где с и d – остатки от деления на р чисел а + b и а b соответственно.
Пусть, например, р = 7, тогда и
, , .
Часто обозначают: a + b = с (mod p) и a b = d (mod p).
Конечным полем характеристики р называется алгебра , если р – простое число.
3. Пусть задано множество U.
Булеаном U называется множество всех подмножеств множества U (обозначается B(U)).
Булева алгебра множеств над U или алгебра Кантора – алгебра B(U), ). Ее тип (2,2,1), сигнатура ( ).
Элементами основного множества булевой алгебры являются множества (подмножества U).
Для любого B( ), ) – является подалгеброй В.
Например, если , то основное множество алгебры В содержит 16 элементов; алгебра B( ), ) – подалгебра В. Ее несущее множество содержит четыре элемента.
4. Множество F одноместных функций на R, т. е. функции вместе с операцией дифференцирования является алгеброй. Элементы несущего множества – функции типа , единственная операция этой алгебры – операция дифференцирования.
Множество элементарных функций замкнуто относительно дифференцирования, поскольку произведение элементарных функций элементарно, следовательно, образуют подалгебру данной алгебры.
- Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «кемеровский государственный университет»
- Кафедра автоматизации исследований
- И технической кибернетики
- Дискретная математика
- Содержание
- Глава 1. Теория множеств. Дискретная теория вероятности......5
- Глава 2. Теория графов.....................................................................53
- Глава 3. Дискретные структуры: конечные автоматы, коды...76
- Глава 4. Алгебра логических функций..........................................88
- Глава 5. Логика высказываний и логика предикатов..............109
- Глава 6. Схемы переключателей. Комбинационные схемы...................................................................................................123
- Глава 1. Теория множеств. Дискретная теория вероятности
- Множества и операции над ними
- Упражнения
- 1.2. Векторы и прямые произведения множеств. Проекция вектора на ось
- Упражнения
- 1.3. Комбинаторика Правило суммы
- Правило произведения
- Число размещений без повторений
- Число размещений с повторениями
- Число перестановок без повторений
- Число сочетаний без повторений
- Упражнения
- 1.4. Введение в дискретную теорию вероятностей
- Свойства элементарных событий:
- Соотношения между событиями:
- Свойства операций над событиями:
- Упражнения
- 1.5. Соответствия и функции
- Взаимно однозначные соответствия и мощность множеств
- Упражнения
- 1.6. Отношения
- Способы задания бинарных отношений
- Свойства бинарных отношений
- Отношение эквивалентности
- Отношение порядка
- Лексико-графический порядок.
- Упражнения
- 1.7. Операции и алгебры
- Свойства бинарных алгебраических операций
- 1.8. Гомоморфизм и изоморфизм алгебр
- Полугруппы, группы, решетки
- Упражнения
- Глава 2. Теория графов
- 2.1. Основные определения, способы задания, основные классы, изоморфизм графов
- Способы задания графа
- Степени вершин графа
- Части, суграфы и подграфы
- Операции над частями графа
- Графы и бинарные отношения
- Упражнения
- Среди пар графов, изображенных на рисунке, указать пары изоморфных графов и пары неизоморфных графов. Ответ обосновать.
- Маршруты, цепи и циклы. Расстояния, диаметры, центры. Обходы. Разделяющие множества и разрезы
- Упражнения
- Деревья, их свойства. Характеристические числа графов. Сети
- Упражнения
- Глава 3. Дискретные структуры: конечные автоматы, коды
- 3.1. Машина Тьюринга
- Упражнения
- Основы теории кодирования
- Упражнения
- Глава 4. Алгебра логических функций
- 4.1. Основные определения
- Упражнения
- 4.2. Эквивалентные преобразования
- Упражнения
- 4.3. Дизъюнктивные и конъюнктивные нормальные формы
- Упражнения
- 4.4. Дизъюнктивные нормальные формы и импликанты
- Упражнения
- 4.5. Минимизация днф. Тупикова днф
- Упражнения
- 4.6. Алгебра Жегалкина
- Упражнения
- 4.7. Двойственность в алгебре логики. Самодвойственные функции
- Принцип двойственности
- Упражнения
- 4.8. Функциональная полнота систем
- Упражнения
- Глава 5. Логика высказываний и логика предикатов
- 5.1. Логика высказываний
- Алгебра логики
- Исчисление высказываний
- Упражнения
- 5.2. Логика предикатов
- Упражнения
- Глава 6. Схемы переключателей. Комбинационные схемы
- Схемы переключателей
- Комбинационные схемы
- Упражнения
- Литература
- 650043, Кемерово, ул. Красная, 6.