Интеграл фурье. Преобразование фурье.
Теорема. Если f(t) кусочно – непрерывная кусочно – дифференцируемая функция и удовлетворяет условиям абсолютной интегрируемости, т. е.
, то функция f(t) представляется интегралом Фурье:
(1)
На практике обычно используют комплексную форму интеграла Фурье:
(2)
Покажем, что ряд (1) и (2) эквивалентны
Обозначим
Ясно, что - четная функция , а функция - нечетная функция . Поэтому
в силу нечетности функции.
Окончательно получим, что
Представим интеграл (2) в виде .
Обозначим (3)
тогда (4)
Равенство (4) прямое преобразование Фурье. Оно позволяет вещественной функции f(t) поставить в соответствие функцию F(iw). Обычно прямое преобразование Фурье записывают в виде . Равенство (4) задает обратное преобразование Фурье. Оно позволяет по комплексной функции F(iw) восстановить вещественную функцию f(t).
Преобразования Фурье относятся к интегральным преобразованиям. Переход от вещественной функции f(t) к комплексной функции F(iw) позволяет упростить некоторые математические операции, например, дифференцирование вещественной функции f(t) в комплексной области (для функции F(iw) это соответствует умножению на iw).
Символически прямое преобразование Фурье представляется в виде:
, а обратное .
Рассмотрим физический смысл интеграла (4). Множитель задает гармоническую функцию. По определению интеграл представляет собой операцию суммирования по частоте w . Таким образом, из равенства (4) следует, что периодическую функцию можно представить в виде бесконечной суммы гармонических функций, при этом в отличии от ряда Фурье частота w в (4) изменяется непрерывно от до . По аналогии с рядом Фурье функцию F(iw) называют комплексный спектр (спектральная характеристика, спектральная плотность).
- Спецглавы математики
- Лекция 1.............................................................................................................4
- Аннотация
- Лекция 1 План лекции
- Функции комплексного переменного.
- 1.Область на комплексной плоскости.
- Лекция 2 План лекции
- 2. Понятие и функции комплексного переменного.
- 3. Дифференцируемость и аналитичность.
- Лекция 3 План лекции
- Элементарные функции комплексного переменного.
- 3. Логарифмическая функция.
- Пусть , а , тогда ,
- 4.Тригонометрические функции.
- 5. Гиперболические функции.
- 6. Обратные тригонометрические функции.
- Контурным интегралом функции комплексного переменного называется , если существует, не зависит от способа деления контура с точками и от выбора точек на дуге .
- Лекция 7 План лекции
- Представление аналитических функций рядами.
- Ряд Тейлора.
- Лекция 9 План лекции
- Лемма жордана.
- Интеграл фурье. Преобразование фурье.
- Лекция 9 План лекции
- Лемма жордана.
- Интеграл фурье. Преобразование фурье.
- Лекция 10 План лекции
- Некоторые специальные функции.
- 1. Единичная ступенчатая функция.
- 2. Дельта функция.
- Лекция 11 План лекции
- Обобщенное преобразование фурье. Преобразование лапласа.
- Свойства преобразований лапласа.
- Лекция 13
- Лекция 14
- Применение преобразования лапласа для решения линейных дифференциальных уравнений с постоянными коэффициентами.
- Обратное преобразование лапласа рациональной алгебраической дроби.
- Изображение импульса произвольной формы.
- Изображение периодических функций.
- Лекция 15
- Решетчатые функции.
- Решетчатые функции.
- Разностные уравнения.
- Линейные разностные уравнения с постоянными коэффициентами.
- Лекция 16
- Дискретное преобразование лапласа.
- Лекция 17
- Связь между обычным преобразованием лапласа и d и z- преобразованиями. Преобразование .
- Свойства z – преобразования.