Циклическая группа
Теорема. Пересечение любого множества подгрупп данной группы само является подгруппой этой группы.
Пусть — произвольное непустое подмножество группы . Рассмотрим всевозможные подгруппы , которые содержат в качестве подмножества. Одной из них будет, в частности, сама группа (уже было сказано о том, что у каждой структуры есть две несобственные подструктуры — сама структура и нейтральный элемент). В силу предыдущей теоремы пересечение всех таких подгрупп будет какой-то подгруппой , которая называется подгруппой, порождённой множеством , и обозначается .
Группа — 1) подгруппа исходной группы , порождённая множеством , 2) результат пересечения всех подгрупп исходной группы , содержащих в качестве подмножества.
Циклическая группа — 1) подгруппа исходной группы , порождённая элементом (то есть состоит из одного элемента — ), 2) группа, которая может быть порождена одним элементом .
Мультипликативная группа (аддитивная группа ) называется циклической, если она состоит из всех целых степеней (всех целых кратных) одного элемента , то есть
Теорема. Циклическая группа , порождённая элементом , состоит из всех целых степеней (целых кратных) элемента (все степени принадлежат группе ).
Если группа совпадает с одной из своих циклических подгрупп (то есть состоит из степеней одного из своих элементов), то сама эта группа называется циклической, а элемент, из степеней которого состоит циклическая группа, — её образующим.
Теорема. Всякая подгруппа циклической группа сама циклическая.
Всякая циклическая группа абелева (коммутативная), так как степени одного и того же элемента коммутируют между собой.
Примеры:
-
Аддитивная группа — циклическая. Её образующий элемент — число (всякое число кратно числу 1). Это конечная группа.
-
Аддитивная группа — циклическая. Её образующий элемент — число (всякое число кратно числу 1). Также можно выбрать в качестве образующего число . Это бесконечная группа.
-
Мультипликативная группа степеней числа — циклическая.
-
Группа, элементами которой являются корни -ой степени из 1 в множестве комплексных чисел с групповой операцией умножение, является циклической. Действительно, это конечная группа -ого порядка. Её элементы , .
- По дискретной математике
- 0. Введение. Граф
- Виды графов
- Основная информация
- Матрицы
- 1. Сеть. Потоки в сети. Теорема Форда — Фалкерсона
- 2. Функция. Бинарное отношение. Тотальность, сюръективность, инъективность, биективность. Примеры Множество
- Бинарное отношение
- Свойства бинарных отношений на множестве
- Явное перечисление пар, определяющих бинарное отношение.
- Задание процедуры проверки.
- Задание матрицей смежности.
- Задание графом.
- Задание списком смежностей.
- Функция
- 3. Бинарное отношение. Свойства. Матрица смежности и граф отношения. Отношение эквивалентности. Примеры
- Отношение эквивалентности
- 4. Множество точек любой прямой имеет мощность континуума.
- 4. Алгебраическая структура. Полугруппа, моноид, группа. Примеры
- Полугруппа
- 5. Группа. Абелева группа. Аддитивная группа. Мультипликативная группа. Конечная группа. Таблица Кэли. Циклическая группа. Декартово произведение групп Группа
- Циклическая группа
- Декартово произведение групп
- 6. Группа подстановок. Симметрическая группа . Умножение подстановок. Нейтральный элемент. Обратная подстановка. Число элементов группы Группа подстановок
- 7. Цикл. Теорема о представлении подстановки в виде произведения независимых циклов. Транспозиция. Чётные и нечётные подстановки. Знакопеременная группа Цикл
- Гомоморфизм. Изоморфизм. Теорема Кэли
- 8. Кольцо. Свойства. Коммутативное кольцо. Делители 0. Область целостности. Примеры. Подкольцо. Единица кольца. Поле. Примеры Кольцо
- 9. Идеал. Главный идеал. Теорема об идеалах поля (только и ). Следствие об идеалах в кольце Идеал
- 10. Сравнения. Классы вычетов по модулю (по идеалу ). Свойства. Малая теорема Ферма. Функция Эйлера. Теорема Эйлера (теория чисел) Сравнения
- Свойства сравнений
- 11. Характеристика кольца. Теорема о характеристике кольца без делителей 0. Примеры. Кольцо классов вычетов. Примеры Характеристика кольца
- 12. Простой идеал. Необходимое и достаточное условие того, что идеал кольца — простой Простой идеал
- 13. Поле классов вычетов. Минимальное поле. Примеры Поле классов вычетов
- 14. Евклидово кольцо. Свойства (8 свойств). Примеры Евклидово кольцо
- Свойства евклидовых колец
- В евклидовом кольце все идеалы главные.
- Любое евклидово кольцо содержит 1.
- Если в евклидовом кольце ( делит ), но не делит , то .
- 15. Кольцо многочленов . Условия того, что кольцо — евклидово кольцо Кольцо многочленов
- 16. Приводимые и неприводимые многочлены в кольце . Примеры. Теорема о разложении в на произведение неприводимых множителей. Теорема Безу
- 17. Расширение поля (надполе). Теорема о том, что кольцо классов вычетов по модулю неприводимого многочлена есть поле. Степень расширения. Число элементов этого поля Расширение поля
- 18. Поле Галуа. Примеры полей Галуа как расширения полей. Таблицы сложения и умножения Поле Галуа
- Литература