3.5 Главные линии плоскости
В плоскости можно расположить бесчисленное количество прямых, среди которых будут линии уровня плоскости, т.е. прямые, параллельные плоскостям проекций, и прямые, перпендикулярные к этим линиям уровня, так называемые линии наибольшего уклона плоскости. Такие прямые называются главными (или особыми) линиями плоскости. К первым относятся горизонтальные линии плоскости (горизонтали плоскости), а также фронтальные и профильные (фронтали плоскости, профильные прямые плоскости).
Главные линии плоскости имеют большое практическое применение. Например при помощи горизонталей изображаются части поверхности земляных сооружений, ограниченные плоскостями (откосы насыпей и выемок, плотин и т.п.), определяются их контуры на планах и т.д. Горизонталями плоскости – напластования горных пород, ориентируется положение пласта породы по отношению к сторонам света (простирание), а линией наибольшего уклона указывается положение этого пласта по отношению к плоскости горизонта (падение).
Горизонтали и фронтали плоскости широко используются при решении различных задач начертательной геометрии. Задание плоскости этими линиями имеет ряд преимуществ перед другими способами задания её.
Горизонтали плоскости. Горизонтальными линиями уровня плоскости называются прямые, лежащие в этой плоскости и параллельные горизонтальной плоскости проекций.
Рис. 3.3
Горизонтальную линию уровня любой плоскости можно рассматривать как линию пересечения этой плоскости с горизонтальной плоскостью уровня. Горизонтальную плоскость проекций П1 можно принять за горизонтальную плоскость нулевого уровня. Поэтому горизонтальный след Р1 плоскости можно принять за горизонтальную линию нулевого уровня этой плоскости.
Все горизонтали плоскости, в том числе её горизонтальный след взаимно параллельны как линии пересечения одной плоскости с параллельными плоскостями уровня.
На рис. 3.3, а изображена плоскость Р, заданная следами Р1 и Р2, горизонталь h и ее проекции h1 и h2. Для построения проекций горизонтали на комплексном чертеже (рис. 3.3, б) проведена проекция h2ОХ, построены проекции N2=h2P2 и N1ОХ фронтального следа N горизонтали и через N1 проведена проекция h1P1. Построенная горизонталь h находится в плоскости Р, так как она проходит через точку NP и параллельна прямой Р1Р.
На рис.3.3, в показана горизонталь А1, построенная в плоскости треугольника АВС.
Фронтали плоскости. Фронтальными линиями уровня плоскости называются прямые, лежащие в этой плоскости и параллельные фронтальной плоскости проекций.
Проведя рассуждения, аналогичные рассмотренным для горизонтали, придем к выводу, что фронтали плоскости параллельны фронтальному следу Р2 плоскости, являющемуся фронтальной линией нулевого уровня этой плоскости.
Плоскость Р, заданная следами Р1 и Р2, фронталь f и её проекции f1 и f2 изображены на рис 3.4, а.
рис 3.4
Для построения проекций фронтали на комплексном чертеже (рис 3.4, б) проведена проекция f1ОХ, построены проекции М1=f1Р1 и М1ОХ горизонтального следа М фронтали и через М2 проведена проекция f2Р2. Построенная фронталь fР, т.к. она проходит через точку МР и параллельна прямой Р2Р.
Линия наибольшего уклона (ската) плоскости.
Из всех линий, расположенных в плоскости, прямая, идущая под прямым углом к горизонталям (рис. 3.5,а), наклонена к плоскости П1 под наибольшим углом – линия наибольшего ската плоскости (ЛНС). Её горизонтальная проекция составляет прямой угол с горизонтальным следом плоскости и с горизонтальными проекциями горизонталей. Поэтому ЛНС следует начинать строить с горизонтальной проекции (рис. 3.5, б), которая расположена по прямым углом к следу Р1 и к горизонтальной проекции горизонтали. Отметив на горизонтальной проекции линии наибольшего ската две точки М1 и А1, строим их фронтальные проекции. Фронтальная проекция линии наибольшего ската пройдет через точки М2 и А2. Построение линии наибольшего ската на плоскости, заданной треугольником АВС, показано на рис. 3.5, в, где сначала перпендикулярно к горизонтальной проекции горизонтали проведена горизонтальная проекция 11-21, а затем фронтальная проекция 12-22 этой линии.
Угол наклона линии наибольшего ската к плоскости П1 определяет наклон плоскости Р к плоскости П!.
Рис. 3.5
- Глава 1 Проекции точки.
- 1.2. Задание точки н комплексном чертеже Монжа (эпюр Монжа)
- 1.2.1 Пространственная (или декартовая) система координат. Плоскости проекций
- 1.2.2 Проецирование точки на две плоскости проекций. Четверти пространства
- 1.2.3 Проекции точки на три плоскости проекций. Октанты пространства
- 1.2.4 Точки проекций общего и частного положения.
- 1.3. Обратимость чертежа
- Глава 2 Проекции прямой .
- 2.1. Проецирование прямой на три плоскости проекции.
- 2.2. Положение прямой относительно плоскости проекций.
- 2.3 Определение натуральной величины отрезка
- 2.4. Следы прямой.
- 2.5. Взаимное положение прямых в пространстве.
- 2.6. Конкурирующие точки.
- 2.7. Определение видимости точки
- 2.8. Теорема о проецировании прямого угла.
- Глава 3 Проекции плоскости
- 3.1 Способы задания плоскости на эпюре
- 3.2 Следы плоскости
- 3.3 Принадлежность прямой и точки заданной плоскости
- 3.4 Плоскости общего и частного положения
- 3.5 Главные линии плоскости
- 3.6 Построение линии пересечения двух плоскостей
- 3.7. Построение точки пересечения прямой и плоскости
- 3.8 Параллельность прямой и плоскости
- 3.9 Перпендикулярность прямой и плоскости
- 3.10 Параллельность плоскостей
- 3.11 Перпендикулярность плоскостей
- Примеры позиционных и метрических задач на плоскость
- Глава 4 Методы преобразования комплексного чертежа (эпюра Монжа)
- 4.1. Четыре основных задачи на преобразование
- 4.2. Метод замены (перемены) плоскостей проекций
- 4.3. Метод плоско-параллельного перемещения
- 4.4. Метод вращения вокруг проецирующей прямой?
- 4.5 Метод вращения вокруг линии уровня
- 4.6. Метод вращения вокруг следов плоскости (совмещение)
- Глава 5 Многогранники
- 5.1. Задание многогранников на эпюре Монжа (общие положения)
- 5.2. Виды многогранников
- 5.3. Пересечение многогранника плоскостью
- 5.4. Пересечение многогранника прямой
- 5.5. Взаимное пересечение многогранников
- 5.6. Пересечение многогранников с кривой поверхностью
- 5.7. Развертка многогранных поверхностей методом нормального сечения
- 5.8. Развертка многогранных поверхностей методом раскатки
- 5.9. Развертка многогранных поверхностей методом треугольников (триангуляции)
- Глава 8. Обобщенные позиционные задачи.
- 8.1 Пересечение кривой поверхности плоскостью.
- 8.3 Построение линии пересечения двух поверхностей методом вспомогательных секущих плоскостей (плоскостей посредников) Взаимное пересечение поверхностей
- 8.4 Построение линии пресечения двух поверхностей методом секущих сфер (концентрических сфер посредников)
- 8.5 Особые случаи пересечения поверхностей второго порядка.
- Глава 10. Касательные плоскости.
- 10.1.Построение плоскости, касательной к кривой поверхности.
- 10.2. Построение очертаний поверхности на комплексном чертеже.
- Глава 11 Аксонометрические проекции.
- 11.1. Основные понятия и определения.
- 11.3. Треугольник следов и его свойства. Теорема Польке.
- 11.4. Прямоугольная аксонометрия и ее свойства.
- Построение в изометрической проекции плоских фигур.
- Построение аксонометрической проекции окружности.
- Разрез в аксонометрических проекциях.
- 11.5. Способы построения трехмерного чертежа.
- 11.6. Построение теней в аксонометрии.
- Литература
- Глава 12 тени в ортогональных проекциях
- 12.1. Геометрические основы теории теней
- 12.2. Построение тени от точки
- 12.3. Построение тени от прямой
- 12.4 Построение тени от плоской фигуры
- 12.5 Метод обратных лучей
- 12.6. Построение теней геометрических тел
- 12.7 Собственные и падающие тени на фасадах зданий