5.8. Развертка многогранных поверхностей методом раскатки
Способ раскатки (вращают грани призмы последовательно вокруг одного ребра до совмещения с плоскостью чертежа – получают боковые рёбра призмы и основания в натуральную величину) – для призм, у которых основания параллельны одной плоскости проекций, а боковые рёбра – другой (рис. 5.8).
Рис. 5.8
Пример: Построить развертку боковой поверхности наклонной трёхгранной призмы ABCDE (рис. 5.8)
Рис. 5.8
Решение: Примем за плоскость развертки плоскость Р, походящую через ребро AD, параллельную фронтальной плоскости проекции. Совместим грань ADEB с плоскостью Р. Для этого мысленно разрежем боковую поверхность призмы по ребру AD. А затем осуществим поворот грани ADEB вокруг ребра AD (A2D2).
Для нахождения совмещенного с плоскостью Р положения ребра В0Е0 из точки В2 проводим луч, перпендикулярный к A2D2, и засекаем на нем дугой радиуса А1В1, проведенной из центра А2, точку В0. Через В0 проводим прямую В0Е0, параллельную (A2D2).
Принимаем совмещенное положение ребра В0Е0 за новую ось вращения и поворачиваем вокруг неё грань BEFC до совмещения с плоскостью Р. Для этого из точки С2 проводим луч, перпендикулярный к совмещенному ребру В0Е0, а из точки В0 – дугу окружности радиусом, равным В1С1; пересечение дуги с лучом определит положение точки С0. Через С0 проводим С0F0 параллельно В0Е0. Аналогично находим положение ребра A0D0. Соединив точки A2B0C0A0 и D2E0F0D0 прямыми, получим фигуру A2B0C0A0D0F0D0E0D0 – развертку боковой поверхности призмы. Для получения полной развертки призмы достаточно к к-л из звеньев ломаной линии A2B0C0A0 и D2E0F0D0 пристроить треугольники основания А0В0С0 и D0E0F0.
- Глава 1 Проекции точки.
- 1.2. Задание точки н комплексном чертеже Монжа (эпюр Монжа)
- 1.2.1 Пространственная (или декартовая) система координат. Плоскости проекций
- 1.2.2 Проецирование точки на две плоскости проекций. Четверти пространства
- 1.2.3 Проекции точки на три плоскости проекций. Октанты пространства
- 1.2.4 Точки проекций общего и частного положения.
- 1.3. Обратимость чертежа
- Глава 2 Проекции прямой .
- 2.1. Проецирование прямой на три плоскости проекции.
- 2.2. Положение прямой относительно плоскости проекций.
- 2.3 Определение натуральной величины отрезка
- 2.4. Следы прямой.
- 2.5. Взаимное положение прямых в пространстве.
- 2.6. Конкурирующие точки.
- 2.7. Определение видимости точки
- 2.8. Теорема о проецировании прямого угла.
- Глава 3 Проекции плоскости
- 3.1 Способы задания плоскости на эпюре
- 3.2 Следы плоскости
- 3.3 Принадлежность прямой и точки заданной плоскости
- 3.4 Плоскости общего и частного положения
- 3.5 Главные линии плоскости
- 3.6 Построение линии пересечения двух плоскостей
- 3.7. Построение точки пересечения прямой и плоскости
- 3.8 Параллельность прямой и плоскости
- 3.9 Перпендикулярность прямой и плоскости
- 3.10 Параллельность плоскостей
- 3.11 Перпендикулярность плоскостей
- Примеры позиционных и метрических задач на плоскость
- Глава 4 Методы преобразования комплексного чертежа (эпюра Монжа)
- 4.1. Четыре основных задачи на преобразование
- 4.2. Метод замены (перемены) плоскостей проекций
- 4.3. Метод плоско-параллельного перемещения
- 4.4. Метод вращения вокруг проецирующей прямой?
- 4.5 Метод вращения вокруг линии уровня
- 4.6. Метод вращения вокруг следов плоскости (совмещение)
- Глава 5 Многогранники
- 5.1. Задание многогранников на эпюре Монжа (общие положения)
- 5.2. Виды многогранников
- 5.3. Пересечение многогранника плоскостью
- 5.4. Пересечение многогранника прямой
- 5.5. Взаимное пересечение многогранников
- 5.6. Пересечение многогранников с кривой поверхностью
- 5.7. Развертка многогранных поверхностей методом нормального сечения
- 5.8. Развертка многогранных поверхностей методом раскатки
- 5.9. Развертка многогранных поверхностей методом треугольников (триангуляции)
- Глава 8. Обобщенные позиционные задачи.
- 8.1 Пересечение кривой поверхности плоскостью.
- 8.3 Построение линии пересечения двух поверхностей методом вспомогательных секущих плоскостей (плоскостей посредников) Взаимное пересечение поверхностей
- 8.4 Построение линии пресечения двух поверхностей методом секущих сфер (концентрических сфер посредников)
- 8.5 Особые случаи пересечения поверхностей второго порядка.
- Глава 10. Касательные плоскости.
- 10.1.Построение плоскости, касательной к кривой поверхности.
- 10.2. Построение очертаний поверхности на комплексном чертеже.
- Глава 11 Аксонометрические проекции.
- 11.1. Основные понятия и определения.
- 11.3. Треугольник следов и его свойства. Теорема Польке.
- 11.4. Прямоугольная аксонометрия и ее свойства.
- Построение в изометрической проекции плоских фигур.
- Построение аксонометрической проекции окружности.
- Разрез в аксонометрических проекциях.
- 11.5. Способы построения трехмерного чертежа.
- 11.6. Построение теней в аксонометрии.
- Литература
- Глава 12 тени в ортогональных проекциях
- 12.1. Геометрические основы теории теней
- 12.2. Построение тени от точки
- 12.3. Построение тени от прямой
- 12.4 Построение тени от плоской фигуры
- 12.5 Метод обратных лучей
- 12.6. Построение теней геометрических тел
- 12.7 Собственные и падающие тени на фасадах зданий