12.4 Построение тени от плоской фигуры
При построении падающей тени от плоской фигуры считают, что плоская фигура непрозрачна. Построение падающей тени от любой плоской фигуры сводится к построению падающих теней всех ее точек.
Рассмотрим пример построения тени плоского треугольника (рис.12.14), сторона ВС которого, лежит в горизонтальной плоскости проекций П1. В тех случаях, когда точка или прямая расположена в плоскостях проекций, задача несколько упрощается тем, что теней от этих точек и прямых строить не надо, в этом случае эти точки и прямые сами являются тенью. Для построения тени от данного треугольника надо найти тень только от точки А и соединить ее с горизонтальными проекциями точек В и С.
Рис.12.14 Рис.12.15
По общему правилу находим тень от точки А, которая падает на фронтальную плоскость проекций П2. Полученную тень А2т соединить с горизонтальными проекциями точек В и С нельзя, т.к. точки лежат в разных плоскостях проекций. Поэтому находим мнимую тень точки А на горизонтальной плоскости, предполагая, что плоскость П2 прозрачна, – точка (А1т). Найденную точку соединяем с основанием треугольника В1С1, в пересечении с осью Х находим точки преломления 1 и 2 тени треугольника, откуда тень перейдет на фронтальную плоскость проекций в точку А2т.
В следующем примере (рис.12.15) рассмотрим построение тени четырехугольника АВСД общего положения. Для построения тени этого четырехугольника необходимо построить тени от каждой его вершины. Тени от точек В – В2т и С – С2т упали на фронтальную плоскость проекций П2, а от точек А- А1т и Д – Д1т тени падают на горизонтальную плоскость проекций П1, поэтому их можно соединить между собой. Тени от точек, лежащих в разных плоскостях проекций, соединять нельзя. Поэтому тени от прямых АВ и СД будут с преломлением. Для того, чтобы найти точки преломления теней этих прямых, строим мнимые тени точек В - (В1т) и С - (С1т) на горизонтальной плоскости проекций. Соединив точку АП1т с (В1т) и Д1т с (С1т) в прямые линии находим в пересечении этих прямых с осью Х точки преломления тени 1 и 2. Фигура А1т1В2тС2т2Д1т и будет тенью четырехугольника АВСД.
Если плоская фигура параллельна плоскости проекций, на которую падает тень, то тень равна и расположена подобно самой фигуре. На рис.12.16 построена падающая тень от окружности, плоскость которой параллельна горизонтальной плоскости проекций П1. Для построения тени от этой окружности на параллельную ей плоскость достаточно построить тень от ее центра Е и провести окружность радиусом R.
Рис.12.16
Рис.12.17
На рис. 12.17 показано построение тени от окружности, расположенной параллельно фронтальной плоскости проекций. Для той части тени, которая падает на фронтальную плоскость проекций, достаточно найти тень от центра окружности и из него провести окружность радиусом равным радиусу заданной окружности. Та тень, которая падает на горизонтальную плоскость проекций, будет изображаться в виде эллипса. Для построения этой части тени окружность разбивают на 8 или 10 частей и строят тени этих точек, затем плавно соединяют эти точки.
- Глава 1 Проекции точки.
- 1.2. Задание точки н комплексном чертеже Монжа (эпюр Монжа)
- 1.2.1 Пространственная (или декартовая) система координат. Плоскости проекций
- 1.2.2 Проецирование точки на две плоскости проекций. Четверти пространства
- 1.2.3 Проекции точки на три плоскости проекций. Октанты пространства
- 1.2.4 Точки проекций общего и частного положения.
- 1.3. Обратимость чертежа
- Глава 2 Проекции прямой .
- 2.1. Проецирование прямой на три плоскости проекции.
- 2.2. Положение прямой относительно плоскости проекций.
- 2.3 Определение натуральной величины отрезка
- 2.4. Следы прямой.
- 2.5. Взаимное положение прямых в пространстве.
- 2.6. Конкурирующие точки.
- 2.7. Определение видимости точки
- 2.8. Теорема о проецировании прямого угла.
- Глава 3 Проекции плоскости
- 3.1 Способы задания плоскости на эпюре
- 3.2 Следы плоскости
- 3.3 Принадлежность прямой и точки заданной плоскости
- 3.4 Плоскости общего и частного положения
- 3.5 Главные линии плоскости
- 3.6 Построение линии пересечения двух плоскостей
- 3.7. Построение точки пересечения прямой и плоскости
- 3.8 Параллельность прямой и плоскости
- 3.9 Перпендикулярность прямой и плоскости
- 3.10 Параллельность плоскостей
- 3.11 Перпендикулярность плоскостей
- Примеры позиционных и метрических задач на плоскость
- Глава 4 Методы преобразования комплексного чертежа (эпюра Монжа)
- 4.1. Четыре основных задачи на преобразование
- 4.2. Метод замены (перемены) плоскостей проекций
- 4.3. Метод плоско-параллельного перемещения
- 4.4. Метод вращения вокруг проецирующей прямой?
- 4.5 Метод вращения вокруг линии уровня
- 4.6. Метод вращения вокруг следов плоскости (совмещение)
- Глава 5 Многогранники
- 5.1. Задание многогранников на эпюре Монжа (общие положения)
- 5.2. Виды многогранников
- 5.3. Пересечение многогранника плоскостью
- 5.4. Пересечение многогранника прямой
- 5.5. Взаимное пересечение многогранников
- 5.6. Пересечение многогранников с кривой поверхностью
- 5.7. Развертка многогранных поверхностей методом нормального сечения
- 5.8. Развертка многогранных поверхностей методом раскатки
- 5.9. Развертка многогранных поверхностей методом треугольников (триангуляции)
- Глава 8. Обобщенные позиционные задачи.
- 8.1 Пересечение кривой поверхности плоскостью.
- 8.3 Построение линии пересечения двух поверхностей методом вспомогательных секущих плоскостей (плоскостей посредников) Взаимное пересечение поверхностей
- 8.4 Построение линии пресечения двух поверхностей методом секущих сфер (концентрических сфер посредников)
- 8.5 Особые случаи пересечения поверхностей второго порядка.
- Глава 10. Касательные плоскости.
- 10.1.Построение плоскости, касательной к кривой поверхности.
- 10.2. Построение очертаний поверхности на комплексном чертеже.
- Глава 11 Аксонометрические проекции.
- 11.1. Основные понятия и определения.
- 11.3. Треугольник следов и его свойства. Теорема Польке.
- 11.4. Прямоугольная аксонометрия и ее свойства.
- Построение в изометрической проекции плоских фигур.
- Построение аксонометрической проекции окружности.
- Разрез в аксонометрических проекциях.
- 11.5. Способы построения трехмерного чертежа.
- 11.6. Построение теней в аксонометрии.
- Литература
- Глава 12 тени в ортогональных проекциях
- 12.1. Геометрические основы теории теней
- 12.2. Построение тени от точки
- 12.3. Построение тени от прямой
- 12.4 Построение тени от плоской фигуры
- 12.5 Метод обратных лучей
- 12.6. Построение теней геометрических тел
- 12.7 Собственные и падающие тени на фасадах зданий