1.2.1 Пространственная (или декартовая) система координат. Плоскости проекций
Вверх
. В данном курсе будут рассмотрены чертежи, получаемые ортогональным проецированием на две или более взаимно перпендикулярные плоскости проекций (комплексный чертеж) и путем перепроецирования вспомогательной проекции предмета на основную аксонометрическую плоскость проекций (аксонометрический чертеж).
Рис. 1. 4.
Из рис. 1. 4. видно, что проекции А1 отвечает бесчисленное множество точек (А, A’, A''), лежащих на проецирующем луче, идущем из А1 перпендикулярно к плоскости проекции П1.
Совокупность двух прямоугольных проекций на две взаимно перпендикулярные плоскости позволяет однозначно определить форму и положение предмета в пространстве. Однако в черчении при построении изображений чаще используют три плоскости проекции и потому рассмотрим законы проецирования на три плоскости проекции.
Пусть заданы три взаимно перпендикулярные плоскости проекций, образующих прямой трехгранный угол (рис.1.5.): П1 – горизонтальная, П2 – фронтальная и П3 – профильная плоскости проекций; линии Оx, Оy, Оz взаимного пересечения плоскостей проекций называются осями проекций, а точка О – началом осей проецирования.
Рис. 1.5.
В пространстве трехгранного угла задана точка А и требуется построить ее проекции на плоскости П1, П2, П3 (точку можно рассматривать как вершину некоторого предмета, например параллелепипеда, изображенного на рис.1.6.). Для этого из точки А проводят проецирующие лучи АА1, АА2, АА3, перпендикулярные к плоскостям проекций, до пересечения с ними. В результате пересечения получают А1 – горизонтальную, А2 – фронтальную, А3 – профильную проекции точки А. Прямая АА1 называется горизонтально проецирующим, АА2 – фронтально проецирующим, АА3 – профильно проецирующим лучами. Проецирующие лучи АА1 и АА2 определяют плоскость перпендикулярную к оси Ох и ∩ плоскостям П1, П2 пересекает плоскости проекций по прямым А1Ах и А2АХ, перпендикулярно к оси Ох. Точку пересечения этой плоскости с осью Ох обозначают Ах. рассуждая аналогично, получают прямые А1Ау и А3Ау, перпендикулярные к оси Оу, и прямые А2Az и А3Az, перпендикулярные к оси Оz.
Рис. 1.6.
- Глава 1 Проекции точки.
- 1.2. Задание точки н комплексном чертеже Монжа (эпюр Монжа)
- 1.2.1 Пространственная (или декартовая) система координат. Плоскости проекций
- 1.2.2 Проецирование точки на две плоскости проекций. Четверти пространства
- 1.2.3 Проекции точки на три плоскости проекций. Октанты пространства
- 1.2.4 Точки проекций общего и частного положения.
- 1.3. Обратимость чертежа
- Глава 2 Проекции прямой .
- 2.1. Проецирование прямой на три плоскости проекции.
- 2.2. Положение прямой относительно плоскости проекций.
- 2.3 Определение натуральной величины отрезка
- 2.4. Следы прямой.
- 2.5. Взаимное положение прямых в пространстве.
- 2.6. Конкурирующие точки.
- 2.7. Определение видимости точки
- 2.8. Теорема о проецировании прямого угла.
- Глава 3 Проекции плоскости
- 3.1 Способы задания плоскости на эпюре
- 3.2 Следы плоскости
- 3.3 Принадлежность прямой и точки заданной плоскости
- 3.4 Плоскости общего и частного положения
- 3.5 Главные линии плоскости
- 3.6 Построение линии пересечения двух плоскостей
- 3.7. Построение точки пересечения прямой и плоскости
- 3.8 Параллельность прямой и плоскости
- 3.9 Перпендикулярность прямой и плоскости
- 3.10 Параллельность плоскостей
- 3.11 Перпендикулярность плоскостей
- Примеры позиционных и метрических задач на плоскость
- Глава 4 Методы преобразования комплексного чертежа (эпюра Монжа)
- 4.1. Четыре основных задачи на преобразование
- 4.2. Метод замены (перемены) плоскостей проекций
- 4.3. Метод плоско-параллельного перемещения
- 4.4. Метод вращения вокруг проецирующей прямой?
- 4.5 Метод вращения вокруг линии уровня
- 4.6. Метод вращения вокруг следов плоскости (совмещение)
- Глава 5 Многогранники
- 5.1. Задание многогранников на эпюре Монжа (общие положения)
- 5.2. Виды многогранников
- 5.3. Пересечение многогранника плоскостью
- 5.4. Пересечение многогранника прямой
- 5.5. Взаимное пересечение многогранников
- 5.6. Пересечение многогранников с кривой поверхностью
- 5.7. Развертка многогранных поверхностей методом нормального сечения
- 5.8. Развертка многогранных поверхностей методом раскатки
- 5.9. Развертка многогранных поверхностей методом треугольников (триангуляции)
- Глава 8. Обобщенные позиционные задачи.
- 8.1 Пересечение кривой поверхности плоскостью.
- 8.3 Построение линии пересечения двух поверхностей методом вспомогательных секущих плоскостей (плоскостей посредников) Взаимное пересечение поверхностей
- 8.4 Построение линии пресечения двух поверхностей методом секущих сфер (концентрических сфер посредников)
- 8.5 Особые случаи пересечения поверхностей второго порядка.
- Глава 10. Касательные плоскости.
- 10.1.Построение плоскости, касательной к кривой поверхности.
- 10.2. Построение очертаний поверхности на комплексном чертеже.
- Глава 11 Аксонометрические проекции.
- 11.1. Основные понятия и определения.
- 11.3. Треугольник следов и его свойства. Теорема Польке.
- 11.4. Прямоугольная аксонометрия и ее свойства.
- Построение в изометрической проекции плоских фигур.
- Построение аксонометрической проекции окружности.
- Разрез в аксонометрических проекциях.
- 11.5. Способы построения трехмерного чертежа.
- 11.6. Построение теней в аксонометрии.
- Литература
- Глава 12 тени в ортогональных проекциях
- 12.1. Геометрические основы теории теней
- 12.2. Построение тени от точки
- 12.3. Построение тени от прямой
- 12.4 Построение тени от плоской фигуры
- 12.5 Метод обратных лучей
- 12.6. Построение теней геометрических тел
- 12.7 Собственные и падающие тени на фасадах зданий