logo
Лекции по начертательной геометрии

3.9 Перпендикулярность прямой и плоскости

 

Из стереометрии известна теорема об условии  перпендикулярности прямой к плоскости: прямая перпендикулярна к плоскости, если она перпендикулярна к двум пересекающимся прямым этой плоскости. Известно также, что прямая, перпендикулярная к плоскости, перпендикулярна ко всем прямым, лежащим в этой плоскости, в том числе к её линиям уровня.

При построении проекций прямой перпендикулярной к плоскости, в качестве пересекающихся прямых этой плоскости берутся её линии уровня или следы плоскости, а не случайные прямые.

 

Рис. 3.16

 

Пусть прямая КР (рис. 3.16). Проведем через точку А горизонталь h (АС) плоскости Р. Эти прямые образуют прямой угол (КААС), одна сторона которого АС параллельна плоскости П1. Такой угол спроецируется на плоскость П1 без искажения А1К1h11С1). Но так как h1Р1, то А1К1Р1. Проведем фронталь f(АВ) плоскости Р: АКf(АВ) и А2К2f22В2), так как fП2. Но f22В2)  Р2, поэтому А2К2Р2.

Итак условие построения модели взаимно перпендикулярных прямых и плоскости: если АКР и (h, f)Р, то А1К1h1 и А2К2f2.

Выводы: если прямая перпендикулярна к плоскости, то горизонтальная проекция её перпендикулярна к горизонтальным проекциям горизонталей, а фронтальная проекция перпендикулярна к фронтальным проекциям фронталей этой плоскости.

Приведенное положение дает возможность решать ряд задач и, в частности, опустить или восстановить перпендикуляр к плоскости, решить обратную задачу – провести плоскость перпендикулярно прямой, определить расстояние от точки до плоскости (см. пример 7.8)