11.5. Способы построения трехмерного чертежа.
Для построения аксонометрических проекций применяют способы координат, вторичных проекций, сечений, вписанных сфер, проекционной связи и др..
Способы координат.
Часто приходится, пользуясь ортогональными проекциями, строить аксонометрические изображения по координатам. При построении необходимо откладывать по осям в аксонометрии соответствующие размеры, взятые с ортогонального чертежа.
Плоские и пространственные кривые строят по координатам отдельных точек. Приступая к вычерчиванию деталей в аксонометрии, следует прежде всего решить, вдоль какой оси будет направлен тот или иной их размер. Обычно длину откладывают вдоль оси OX, ширину – вдоль оси OY и высоту – вдоль оси OZ.
Аксонометрические координаты, откладываемые параллельно соответствующим осям, равны натуральным координатам X, Y, Z, измеренными по ортогональным проекциям и умноженным на соответствующий показатель искажения (рисунок 11.28).
Рисунок 11.28
На рисунке 11.29 показано выполнение аксонометрии детали с четвертью выреза
Рисунок 11.29
Способы сечений.
По данному комплексному чертежу предмета сначала строят аксонометрические проекции фигур сечения, затем дочерчивают части изображения предмета, расположенные за секущими плоскостями. Второй способ упрощает построение, освобождает чертеж от лишних линий (рисунок 11.30).
Рисунок 11.30
При выборе вида аксонометрического изображения необходимо учитывать следующее: если тело имеет квадратную форму или отдельная часть предмета квадратная, то следует выполнять прямоугольную диметрическую проекцию этого тела, так как в прямоугольной изометрии ухудшается наглядность изображения.
Другие способы построения аксонометрических проекций подробно рассмотрены в учебнике «Строительные черчение» авторы Будасов Б.В., Каменский В.П. (Стройиздат 1995г. с изменениями).
Пересечение тел в аксонометрии. Пересечение цилиндрических поверхностей.
Для построения изометрической проекции пересекающихся цилиндров необходимо построить линию пересечения этих тел (глава 8 п.8.3;п.8.4) на комплексном чертеже (рисунок 11.31).
Рисунок 11.31
Построение прямоугольной изометрической проекции пересекающихся цилиндров начинают с построения изометрии вертикального цилиндра. Далее через точку о´1 параллельно оси о´х´ проводят ось горизонтального цилиндра. Положение точки о´1 определяется высотой h, взятой с комплексного чертежа (рисунок 11.31). Отрезок, равный h, откладывают от точки о´ вверх по оси о´z´ (рисунок 11.32). откладывая от точки о´1 по оси горизонтального цилиндра отрезок l, получим точку о´ – центр основания горизонтального цилиндра.
Рисунок 11.32
Изометрия линии пересечения строится по точкам при помощи трех координат, как это было показано на рисунке 2. однако в данном примере искомые точки можно построить несколько иначе.
Так, например, изометрию точек 3´ и 2´ строят следующим образом. От центра 0´2 (рис.11.32) вверх по прямой, параллельной оси о´z´, откладывают отрезки m и n, взятые с комплексного чертежа. Через концы этих отрезков проводят прямые, параллельные оси о´у´, до пересечения с эллипсом или овалом (основанием горизонтального цилиндра) в точках 3´1 и 2´1 . Затем из точек 3´1 и 2´1 проводят прямые, параллельные оси о´х´, и на них откладывают отрезки, равные расстоянию от основания горизонтального цилиндра до линии пересечения, взяты с фронтальной или горизонтальной проекции комплексного чертеже, например, отрезок 3´1 3´ = 31 3. Конечные точки этих отрезков будут принадлежать изометрии линий пересечений. Через эти точки проводят по лекалу кривую, выделяя ее видимы и невидимые часть.
Пересечение поверхностей призм и пирамид.
В приемах построения проекции линии пересечения двух прямых призм много общего с построением линий пересечения двух цилиндров. Если ребра двух призм взаимно перпендикулярны (рисунок 11.33) линия пересечения призм строится следующим образом.
Рисунок 11.33
В данном случае горизонтальная и профильная проекции линии пересечения совпадаю соответственно с горизонтальной проекцией пятиугольника (основание одной призмы) и с профильной проекцией части четырехугольника (основание другой призмы). Фронтальную проекцию ломанной линии пересечения строят по точкам пересечения ребер одной призмы с гранями другой.
Например, взяв горизонтальную 11 и профильную 12 проекции точки 11 пересечение ребра пятигранной призмы с гранью четырехгранной и пользуясь известным приемом построения, с помощью линии связи можно легко найти и фронтальную проекцию 12 точки 11, принадлежащей линии пересечения призмы.
Изометрическая проекция линии пересечения двух призм может быть построена по координатам точек этой линии.
Рисунок 11.34
Например, изометрию двух точек 5´ и 5´1, симметрично расположенных на левой грани пятигранной призмы, строят так. Принимая для удобства построений за начало координат точку о´, лежащую на верхнем основании пятигранной призмы, откладываем в лево от о´ по направлению, параллельному изометрической оси о´х´, отрезок о´Е´, равной координате х5, взятой с комплексного чертежа на фронтальной или горизонтальной проекции. Далее из точки Е´ вниз параллельно оси o´z´ откладываем отрезок Е´F´, равный второй координате z5 = a, и, наконец, от точки F´ влево и вправо параллельно оси о´y´ откладываем отрезки F´5´ и F´5´1, равные третьей координате у5 = .
Далее от точки F´ параллельно оси о´x´ откладываем отрезок n, взятый с комплексного чертежа. Через его конец проводим прямую, параллельную оси о´y´, и откладываем на них отрезок, равный с. Вниз параллельно оси о´z´ откладываем отрезок, равный b, и параллельно о´y´ - отрезок, равные к. В результате получаем изометрию основания четырехгранной призмы.
Точки 1´ и 4´ на ребрах пятигранной призмы можно построит используя только одну координату z.
- Глава 1 Проекции точки.
- 1.2. Задание точки н комплексном чертеже Монжа (эпюр Монжа)
- 1.2.1 Пространственная (или декартовая) система координат. Плоскости проекций
- 1.2.2 Проецирование точки на две плоскости проекций. Четверти пространства
- 1.2.3 Проекции точки на три плоскости проекций. Октанты пространства
- 1.2.4 Точки проекций общего и частного положения.
- 1.3. Обратимость чертежа
- Глава 2 Проекции прямой .
- 2.1. Проецирование прямой на три плоскости проекции.
- 2.2. Положение прямой относительно плоскости проекций.
- 2.3 Определение натуральной величины отрезка
- 2.4. Следы прямой.
- 2.5. Взаимное положение прямых в пространстве.
- 2.6. Конкурирующие точки.
- 2.7. Определение видимости точки
- 2.8. Теорема о проецировании прямого угла.
- Глава 3 Проекции плоскости
- 3.1 Способы задания плоскости на эпюре
- 3.2 Следы плоскости
- 3.3 Принадлежность прямой и точки заданной плоскости
- 3.4 Плоскости общего и частного положения
- 3.5 Главные линии плоскости
- 3.6 Построение линии пересечения двух плоскостей
- 3.7. Построение точки пересечения прямой и плоскости
- 3.8 Параллельность прямой и плоскости
- 3.9 Перпендикулярность прямой и плоскости
- 3.10 Параллельность плоскостей
- 3.11 Перпендикулярность плоскостей
- Примеры позиционных и метрических задач на плоскость
- Глава 4 Методы преобразования комплексного чертежа (эпюра Монжа)
- 4.1. Четыре основных задачи на преобразование
- 4.2. Метод замены (перемены) плоскостей проекций
- 4.3. Метод плоско-параллельного перемещения
- 4.4. Метод вращения вокруг проецирующей прямой?
- 4.5 Метод вращения вокруг линии уровня
- 4.6. Метод вращения вокруг следов плоскости (совмещение)
- Глава 5 Многогранники
- 5.1. Задание многогранников на эпюре Монжа (общие положения)
- 5.2. Виды многогранников
- 5.3. Пересечение многогранника плоскостью
- 5.4. Пересечение многогранника прямой
- 5.5. Взаимное пересечение многогранников
- 5.6. Пересечение многогранников с кривой поверхностью
- 5.7. Развертка многогранных поверхностей методом нормального сечения
- 5.8. Развертка многогранных поверхностей методом раскатки
- 5.9. Развертка многогранных поверхностей методом треугольников (триангуляции)
- Глава 8. Обобщенные позиционные задачи.
- 8.1 Пересечение кривой поверхности плоскостью.
- 8.3 Построение линии пересечения двух поверхностей методом вспомогательных секущих плоскостей (плоскостей посредников) Взаимное пересечение поверхностей
- 8.4 Построение линии пресечения двух поверхностей методом секущих сфер (концентрических сфер посредников)
- 8.5 Особые случаи пересечения поверхностей второго порядка.
- Глава 10. Касательные плоскости.
- 10.1.Построение плоскости, касательной к кривой поверхности.
- 10.2. Построение очертаний поверхности на комплексном чертеже.
- Глава 11 Аксонометрические проекции.
- 11.1. Основные понятия и определения.
- 11.3. Треугольник следов и его свойства. Теорема Польке.
- 11.4. Прямоугольная аксонометрия и ее свойства.
- Построение в изометрической проекции плоских фигур.
- Построение аксонометрической проекции окружности.
- Разрез в аксонометрических проекциях.
- 11.5. Способы построения трехмерного чертежа.
- 11.6. Построение теней в аксонометрии.
- Литература
- Глава 12 тени в ортогональных проекциях
- 12.1. Геометрические основы теории теней
- 12.2. Построение тени от точки
- 12.3. Построение тени от прямой
- 12.4 Построение тени от плоской фигуры
- 12.5 Метод обратных лучей
- 12.6. Построение теней геометрических тел
- 12.7 Собственные и падающие тени на фасадах зданий