Решетчатые функции.
Наряду с функциями f(t), заданными в каждой точке числовой оси t, рассмотрим функции, заданные лишь в некоторых точках Такие функции называются решетчатыми. Обычно решетчатые функции задают в равноотстоящих точках t = nT, где n – любое целое число, T = const, называемая периодом дискретности.
К t f(t) -2T –T 0 T 2T 3T
. Функция при фиксированном также является решетчатой, и называется смещенной.
Строго говоря, решетчатые функции являются функциями аргумента n, где n пробегает значений целых чисел, поэтому решетчатая функция обозначается также
Для решетчатой функции вводятся понятия конечная разность, конечная сумма, которые в некотором смысле аналогичны понятиям интеграла и производной для обычных функций.
- называется конечной разностью 1-го порядка функции
Конечной разностью 2-го порядка функции называется конечной разностью 1-го порядка функции
.
Аналогично, конечной разностью - го порядка функции называется
.
Конечную разность любого порядка можно определить через значение функции
.
Справедлива формула
здесь - число сочетаний.
Функция F(n) называется первообразной функции f(n), если конечная разность
В дальнейшем будем рассматривать решетчатые функции f(n), определяемые только для положительных n = 0,1,2,… . Для таких n
.
- конечная сумма.
- Спецглавы математики
- Лекция 1.............................................................................................................4
- Аннотация
- Лекция 1 План лекции
- Функции комплексного переменного.
- 1.Область на комплексной плоскости.
- Лекция 2 План лекции
- 2. Понятие и функции комплексного переменного.
- 3. Дифференцируемость и аналитичность.
- Лекция 3 План лекции
- Элементарные функции комплексного переменного.
- 3. Логарифмическая функция.
- Пусть , а , тогда ,
- 4.Тригонометрические функции.
- 5. Гиперболические функции.
- 6. Обратные тригонометрические функции.
- Контурным интегралом функции комплексного переменного называется , если существует, не зависит от способа деления контура с точками и от выбора точек на дуге .
- Лекция 7 План лекции
- Представление аналитических функций рядами.
- Ряд Тейлора.
- Лекция 9 План лекции
- Лемма жордана.
- Интеграл фурье. Преобразование фурье.
- Лекция 9 План лекции
- Лемма жордана.
- Интеграл фурье. Преобразование фурье.
- Лекция 10 План лекции
- Некоторые специальные функции.
- 1. Единичная ступенчатая функция.
- 2. Дельта функция.
- Лекция 11 План лекции
- Обобщенное преобразование фурье. Преобразование лапласа.
- Свойства преобразований лапласа.
- Лекция 13
- Лекция 14
- Применение преобразования лапласа для решения линейных дифференциальных уравнений с постоянными коэффициентами.
- Обратное преобразование лапласа рациональной алгебраической дроби.
- Изображение импульса произвольной формы.
- Изображение периодических функций.
- Лекция 15
- Решетчатые функции.
- Решетчатые функции.
- Разностные уравнения.
- Линейные разностные уравнения с постоянными коэффициентами.
- Лекция 16
- Дискретное преобразование лапласа.
- Лекция 17
- Связь между обычным преобразованием лапласа и d и z- преобразованиями. Преобразование .
- Свойства z – преобразования.