1.2 Теорема Піфагора та цілочислові прямокутні трикутники
Співвідношення між сторонами прямокутного трикутника, яке подається в підручниках математики та інших джерелах під назвою теореми Піфагора, було відоме з давніх часів. Так, клинописі памятки Вавілона свідчать про те, що за 2-2,5 тисячі років до нашої ери там уже користувалися названим співвідношенням для обчислень. Було відоме воно і стародавнім єгиптянам (за 2300 років до н.е.) ,про що свідчить папірус Берлінського музею. Чому ж ця закономірність названа імям Піфагора, який жив у VI cт. до н.е., тобто значно пізніше?
Піфагор, про життя якого є лише відомості, переписані легендами, народився на о. Самос. У молоді роки він багато подорожував і цілком імовірно, що, відвідавши країни Стародавнього Сходу, познайомився з відомою вже там закономірністю про співвідношення між сторонами прямокутного трикутника. Повернувшись на батьківщину (в Грецію) та оселившись у м. Кротоні, Піфагор заснував філософську школу і серйозно зайнявся систематизацією та узагальненням математичних знань. Піфагор систематизував здобуті фрагментарні відомості про прямокутний трикутник, дав їм логічне обґрунтування, зробивши їх надбанням своїх співвітчизників.
Першопрохідці помітили, що рівність a2+b2=c2 (1) справджується при натуральних значеннях довжин катетів а і b та гіпотенузи с, бо інших чисел вони не знали.
Зясуємо насамперед, чи є такі три послідовності натуральних чисел, що задовольняють рівність (1). Якщо є, то скільки таких трійок чисел?
Нехай a=n -1; b=n ; c=n+1. Тоді (n -1)2+ n2 =( n +1)2 , звідки n2-4n=0; n1=0; n2=4. Умову задачі задовольняє n=4.
Отже, маємо трійку чисел 3,4,5, для яких 32+42=5 2.Оскільки інших розвязків рівняння не має, то існує лише одна така трійка чисел.
Прямокутний трикутник зі сторонами 3, 4 і 5 був відомий стародавнім єгиптянам. Ним вони користувалися, будуючи прямі кути під час землевимірювальних робіт. Поділивши вірьовку на 12 рівних частин, закріплювали її кілками в поділках, які від одного кінця відділяли 3 відрізки, а від другого - 5. Натягуючи вільні кінці вірьовки та суміщаючи їх, діставали прямокутний трикутник з прямим кутом між відрізками 3 і 4 одиниці. Людей, які займалися цією справою, називали гарпедонаптами (натягувачі вірьовок), а прямокутний трикутник зі сторонами 3, 4, і 5 дістав назву єгипетського.
Назвемо прямокутні трикутники довжини сторін яких виражаються цілими числами, цілочисловими. Зрозуміло, що трикутники зі сторонами 3k, 4k i 5k прямокутні цілочислові, бо (3k)2+(4k)2=(5k)2 - 32+42=5 2. Таких трикутників безліч.
Чи існують цілочислові прямокутні трикутники, крім єгипетського, довжини сторін яких - три числа, що мають найбільшим спільним дільником число 1? Шукатимемо такі трикутники, тобто такі трійки натуральних чисел, які задовольнятимуть зазначену вище умову. Виходячи з умови, вони не можуть бути всі парними, але не можуть бути й не парними,бо , якщо a і b непарні, то с парне. (Зазначимо тут, що коли, наприклад, a парне, то a2 кратне 4, бо якщо a=2п ,то a2=4п2.Якщо a непарне, тобто a=2п+1, то a2=4п2+4п+1=4п1+1 - непарне).
Взагалі, якщо будь-які два числа з трійки натуральних чисел a, b і c ,що задовольняють a2+b2=c2 (такі числа називають піфагоровими), мають спільний дільник відмінний від 1, то він буде також дільником і третього числа. Отже, будь-яка пара чисел з шуканих трійок є взаємно-простими числами. Нехай a непарне і b парне, тоді c також непарне.
Маємо :
a2+b2=c2 - b2=c2- a2- b2=(c-a)(c+a).(2)
Числа (c-a) і (c+a) парні, тому тому і цілі ; b2 кратне 4, тому ціле .З рівності ( 2 ) дістанемо:
= * (3).
Числа і взаємно прості. Справді, якщо припустити протилежне, то
=ир1 і =ир2.
Отже
С = и (р1+р2) і а = и (р1-р2),
тобто числа с і а матимуть спільний дільник и, що суперечить умові.
Добуток двох взаємно простих чисел є точним квадратом (рівність 3) лише в тому випадку, коли кожне з цих чисел є точним квадратом. Нехай
=х2; =у2, тоді с=х2+у2 ; а=х2-у2 і =х2у2, або =(2ху)2; b=2ху.
Маємо тотожність
(х2-у2)2+(2ху)2=(х2+у2)2.
Формули
а=х2-у2; b=2ху і с=х2+у2
дають можливість обчислювати a, b і c за значеннями х і у.
Якщо числа х і у взаємно прості й до того ж одне з них парне, а друге непарне, то трійки (a,b,c) будуть саме такі, як у вихідній задачі(найбільший спільний дільник a, b, c дорівнює 1) . Такі трійки піфагорових чисел називаються основними.
Основні трійки піфагорових чисел модна дістати, склавши таку таблицю.
х |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|||||||||
у |
1 |
2 |
1 |
3 |
2 |
1 |
1 |
5 |
2 |
4 |
6 |
1 |
3 |
5 |
7 |
|
a=x2-y2 b=2xy c=x2+y2 |
3 4 5 |
5 12 12 |
15 8 17 |
7 24 25 |
21 20 29 |
9 40 41 |
35 12 37 |
11 60 61 |
45 28 53 |
33 56 65 |
13 84 85 |
63 16 65 |
55 48 73 |
39 80 89 |
15 112 113 |
Її можна продовжити як завгодно довго. Отже, таких трійок чисел безліч.
Єгипетський трикутник, як видно з таблиці, дістанемо, якщо х=2, у=1. Помічаємо також, що коли х-у=1, гіпотенуза більша від більшого катета на 1. Це природно, бо коли
х=у+1, b=2xy=2у(у+1)=2у2+2у; с=(у+1)2+у2=2у2+2у+1 і тому с- b=1.
При цьому менший катет а=х2-у2=2у+1, а різниця довжин катетів b-а=2у2-1.Цей вираз дорівнює 1 тільки тоді, коли у=1. Знову приходимо до висновку, що існує лише один прямокутний трикутник, довжини сторін якого виражаються трьома послідовними натуральними числами.
Сума довжин гіпотенузи й катета b є точний квадрат, бо
с+b=х2+у2+2ху=(х+у)2.
Точним квадратом є також і їх різниця, тобто
с-b=х2+у2-2ху=(х-у)2.
Якщо х-у=п, то с-b=п2. Наприклад, якщо х=5 і у=2, маємо b=20 і с=29;
х+у=7; b+с=20+29=49=72; с- b=29-20=9=32.
Зрозуміло,що з кожної основної трійки піфагорових чисел модна дістати безліч похідних, бо
a2+b2=c2-(3а)2+(4b)2=(5с)2
Наприклад, маючи трійку (3;4;5), дістанемо трійки (6;8;10), (9;12;15), (12;16;20) та ін.
До речі, усі трійки піфагорових чисел, які походять від основної трійки (3;4;5), і основна трійка є арифметичними прогресіями. Інших трійок піфагорових чисел, які б були арифметичними прогресіями немає.
Неважко показати, що серед основних трійок(а отже, і похідних) немає жодної, яка була б геометричною прогресією.
Припустимо, то така трійка (а;b;с) існує. Тоді b2=ас і значить а2+ас=с2. Звідси ас=с2-а2, або ас=(с+а)(с-а). Числа а і с непарні, тоді як (с+а) і (с-а) парні. Отже рівність, хибна, а це означає, що зроблене неправильне припущення.
Похідні трійки можна дістати також, надаючи х і у цілих значень(крім тих, при яких дістанемо основні трійки) або коли і Наприклад, якщо х=4 і у=2, то а=12; b=16; i c=20. Такий результат можна дістати, помножаючи числа 3, 4 і 5 на 4.Якщо і , то а=6, b=8 і с=10; це можна також дістати, помноживши на 2 числа 3, 4 і 5.
Якщо, наприклад, х=1000 і у=999, то дістанемо основну трійку
а=х+у=1999, b=1998000 і с= b+1=1998001.
- Вступ
- Розділ 1. Теорема Піфагора на площині
- 1.1 Різні доведення теореми Піфагора
- 1.2 Теорема Піфагора та цілочислові прямокутні трикутники
- 1.3 Історичні відомості
- 1.4 Розвязування задач
- Задача 1
- Задача2
- Задача 4
- Задача 5
- Доведення 2
- Доведення 2
- Доведення 5
- Доведення 6
- Доведення 7
- Доведення 8
- Висновок
- 2.Діяльнісний підхід у навч. Мат-ки. Зміст і роль заг. Розум. Дій і прийомів розумової діялн.
- 22.Паралельність і перпендикулярність прямих на площині. Методика вивчення.
- Афінні координати Афінна система координат на прямій, на площині, в просторі
- 12. Координати і вектори на площині і в просторі. Застосування до розв’язування задач.
- Питання до екзамену
- 22.Методика вивчення тем "Паралельність прямих на площині". Сума кутів трикутника.
- 26. Нерівність Коші-Буняковського та теорема Піфагора.
- Теорема Піфагора
- 32 . Кут між прямими . Умови паралельності і перпендикулярності двох прямих у просторі. .