1. Основные задачи о прямых и плоскостях
1.Уравнение прямой, проходящей через две точки.
Пусть в пространстве задана общая декартова система координат и две точки М1 и М2 с координатами (x1,y1,z1) и (x2,y2,z2). Чтобы написать уравнение прямой М1М2, примем М1 за начальную точку, а за направляющий вектор. Этот вектор не нулевой, если точки не совпадают.
Получаем . Если в этих равенствах какой-либо из знаменателей равен нулю, то следует приравнять нулю соответствующий числитель.
В планиметрии задача решается также. Отличие только в том, что координаты точек теперь (x1,y1) и (x2,y2), и мы получаем =0.
2.Уравнение плоскости, проходящей через три точки.
Пусть М1, М2,М3 - не лежащие на одной прямой точки с координатами (x1,y1,z1), (x2,y2,z2) и (x3,y3,z3) в общей декартовой системе координат. Выберем М1 в качестве начальной точки, а и в качестве направляющих векторов. Тогда получим уравнение плоскости =0.
3. Параллельность прямой и плоскости.
Пусть известен направляющий вектор прямой a(), а плоскость задана одним из уравнений ()=0 или (-)=0. Прямая параллельна плоскости (а возможно, и лежит в ней) тогда и только тогда, когда соответственно (,)=0 или (,,)=0. Если плоскость задана линейным уравнением Ax+By+Cz+D=0, то условию параллельности - A+B+C =0. Пусть прямая задана системой уравнений .
Тогда получаем A + B + C=0, или =0.
Все приведенные здесь условия являются не только необходимыми, но и достаточными.
4. Расстояние от точки до плоскости.
Пусть дана плоскость с уравнением ()=0 и точка М с радиус вектором . Рассмотрим вектор =-, соединяющий начальную точку плоскости с М(рис 1).Расстояние от точки до плоскости равно модулю его скалярной проекции на вектор , то есть h=. Если в декартовой прямоугольной системе координат точка М имеет координаты (X,Y,Z), то равенство запишется следующим образом h=
5. Расстояние от точки до прямой.
Если прямая задана уравнением =0, то можем найти расстояние h от точки М с радиус - вектором до этой прямой, разделив площадь параллелограмма, построенного на векторах , на длину его основания (рис 2). Результат можно записать формулой h= .
Для прямой в пространстве мы не будем получать координатной записи этого выражения.
Рассмотрим прямую на плоскости, заданную уравнением Ax+By+C=0 в декартовой прямоугольной системе координат. Пусть M0(x0,y0) - начальная точка прямой, а M(X,Y)- некоторая точка плоскости. В качестве направляющего вектора возьмём вектор . Площадь параллелограмма равна S=. Тогда S= и h = .
Рис.2
- Введение
- Глава I. Теоретические основы аксиоматики Вейля
- 1. Биография Вейля
- 2. Варианты аксиоматики Вейля
- 3. Аксиоматика Вейля
- 4. Непротиворечивость и категоричность аксиоматики Вейля
- 5. Прямая
- 6. Плоскость
- 7. Аксиоматика Вейля и школьная геометрия
- Глава II. Задачи, решаемые векторным способом
- 1. Основные задачи о прямых и плоскостях
- 2. Доказательства и решения задач
- Заключение
- Содержание дисциплины и ее разделы
- 8. Исторический обзор обоснования геометрии. Элементы геометрии Лобачевского.
- 28.Векторное построение геометрии
- Лекция 4. Система аксиом Гильберта евклидовой геометрии §7. Обзор аксиоматики Гильберта евклидовой геометрии
- Два недостатка аксиоматики д. Гильберта.
- Многомерное арифметическое евклидово пространство.
- Два недостатка аксиоматики д. Гильберта
- Многомерное арифметическое евклидово пространство
- Программа курса «Геометрия»
- 3. Геометрия