logo
КУРС АЛГЕБРА И ГЕОМЕТРИЯ / ЛЕКЦИИ АиГ / КОНСУЛЬТАЦИЯ 1

Циклические группы конечного порядка

В качестве примера циклической группы конечного порядка рассмотрим группу вращений правильного n-угольника относительно его центра .

Элементами группы

являются повороты n-угольника против часовой стрелки на углы

:

Элементами группы являются

При этом

,

а из геометрических соображений ясно, что

и

.

Группа содержитn элементов, т.е. , а образующим элементом группыявляется, т.е.

.

Пусть , тогда (см. рис. 1)

.

Рис. 1 – Группа – вращений правильного треугольника АВС относительно центра О.

Таблица Кэли

Анализ конечных групп наиболее наглядно осуществлять с помощью таблицы Кэли, которая является обобщением известной «таблицы умножения».

Пусть группа G содержит n элементов.

В этом случае таблица Кэли представляет собой квадратную матрицу имеющую n строк и n столбцов.

Каждой строке и каждому столбцу соответствует один и только один элемент группы.

Элемент таблицы Кэли, стоящий на пересечении i-той строки и j-того столбца, равен результату выполнения операции «умножения» i-го элемента с j-тым элементом группы.

Пример. Пусть группа G содержит три элемента{g1,g2,g3}.Операция в группе «умножение».В этом случае таблица Кэли имеет вид:

Для треугольника, а группа содержит шесть элементов

,

где это повороты (см. рис. 2) вокруг высоты, медианы, биссектрисы имеют вид:

;

,

, .

Рис. 2. – Группа – преобразований симметрии правильного треугольника АВС.