logo
Shpory_po_vysshey_matematike_33_netu_37_ne_ves

Теорема

Если подынтегральная функция непрерывна, то производная определенного интеграла с переменным верхним переделом существует и равна значению подынтегральной функции для этого предела, т.е.

Ф’(х) = ƒ(х).

Доказательство.

Аргументу х функции придадим приращение Δх такое, что [a, b], ему соответствует приращение функции

Применяя формулу получаем = х + θΔх, 0< θ<1.

Итак, ΔФ = ƒ(ξ)Δх, откуда

θΔх) = ƒ(х), т.е.

или

что и требовалось доказать.

Следствие. Определенный интеграл верхним пределом является одной из первообразных для непрерывной подынтегральной функции. Другими словами, для любой непрерывной на промежутке функции существует первообразная.

Формула Ньютона – Лейбница.