logo
Shpory_po_vysshey_matematike_33_netu_37_ne_ves

3. Проекция вектора на ось

Выражение «проекция вектора АВ на ось ОХ» употребляется в двух разных смыслах: геометриче­ском и алгебраическом (арифметическом).

1. Проекцией (геометрической) вектора АВ на ось ОХ называется вектор А'В' , начало которо­го А' есть проекция начала А на ось ОХ, а конец В' — проекция конца В на ту же ось.

Обозначение: Прох АВ или, короче, Пр АВ . Если ось ОХ задана вектором с, то вектор А'В' на­зывается также проекцией вектора АВ на направле­ние вектора с и обозначается Прс АВ .

Геометрическая проекция вектора на ось ОХ на­зывается также компонентой вектора по оси ОХ.

2. Проекцией (алгебраической) вектора АВ на ось ОХ (или на направление вектора с) называется длина вектора А'В', взятая со знаком + или -, смотря по то­му, имеет ли вектор А'В' то же направление, что и ось ОХ (вектор с), или противоположное.

Обозначение: прох АВ или прс АВ .

Замечание. Геометрическая проекция (компо­нента) вектора есть вектор, а алгебраическая проек­ция вектора есть число.

Основные теоремы о проекциях вектора

Теорема 1. Проекция суммы векторов на ка­кую-либо ось равна сумме проекций слагаемых векто­ров на ту же ось.

Теорема справедлива при обоих смыслах термина «проекция вектора» и при любом числе слагаемых; так, при трех слагаемых

Пр (а1+ а2 + а3) = Пр а1 + Пр а2 + Пр а3 (1) и

np(а1 + а2 + а3) = пра1 + пра2 + пра3. (2)

Теорема 2. Алгебраическая проекция вектора на какую-либо ось равна произведению длины вектора на косинус угла между осью и вектором:

пр. b = |b| cos (а^b). (3)