47. Функции нескольких переменных
1).Определение. Если каждой паре (x,y) значений двух независимых переменных из области W ставится определенное значение z, то говорят, что z есть функция двух переменных (x,y).
z=f(x,y)
2).Геометрическое изображение функции двух переменных - поверхность.
3).Частное и полное приращение функции.
Полное приращение функции
Dz=f(x+Dx, y+Dy)-f(x,y)
Частное приращение функции
Dx z=f(x+Dx)-f(x,y)
Dy z=f(x,y+Dy)-f(x,y)
Вообще, полное приращение функции не равно сумме частных приращений. Пример. z=xy.
Dx z=(x+Dx)y-xy=yDx
Dy z=x(y+Dy)-xy=xDy
Dz=(x+Dx)(y+Dy)-xy=yDx+xDy+DyDx № Dy z+Dx z.
4).Непрерывность функции нескольких переменных
Предел функции.
Пусть z=f(x,y) определена в некоторой окрестности A(x0,y0).
Определение. Постоянное число b называют пределом z=f(x,y) при P(x,y) стремящемся к A, если для любого e > 0 можно указать такое значение d > 0, что для всех x, удовлетворяющих неравенству |AP| < d, имеет место неравенство |f(x,y)-b| < e.
5).Непрерывная функция
6).Частные производные
48,49.
Пусть функция Z=f(M) определена на некотором множестве {M} и точка M0 {M} или M0 {M}, но обладает тем свойством, что в любой δ-окрестности этой точки содержится хотя бы одна точка множества {M}, отличная от M0.
ОПРЕДЕЛЕНИЕ: Число А называется пределом функции Z=f(M) в точке M0, если функция Z=f(M) определена в окрестности точки M0 и для любого ε>0, δ>0 такое что при |M0M|<δ, выполняется неравенство |f(M)-A|<ε.
обозначение:
ОПРЕДЕЛЕНИЕ: Функция Z=f(M) называется непрерывной в точке M0, если предел функции в этой точке существует и равен значению функции в этой точке, т.е.
50. Пусть f(x, y) — функция двух переменных x, y, определена в некоторой окрестности точки (x0, y0). Если существует конечный предел ,то функция f(x, y) имеет в точке (x0, y0) частную производную по переменной x. Аналогично определяется частная производная функции f(x1, x2, …, xn) по переменной xi : Обозначают: ,
50. Функция двух переменных обычно записывается как , при этом переменные , называются независимыми переменными или аргументами.
Пример: – функция двух переменных.
1) Когда мы находим частную производную , переменная считается константой.
2) Когда мы находим частную производную , переменная считается константой.
3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной ( , либо какой-нибудь другой), по которой ведется дифференцирование.
51. В математическом анализе, производная по направлению — это обобщение понятия производной на случай функции нескольких переменных. Производная по направлению показывает, насколько быстро функция изменяется при движении вдоль заданного направления.
Производная функции одной переменной показывает, как изменяется её значение при малом изменении аргумента. Если мы попытаемся по аналогии определить производную функции многих переменных, то столкнёмся с трудностью: в этом случае изменение аргумента (то есть точки в пространстве) может происходить в разных направлениях, и при этом будут получаться разные значения производной. Именно это соображение и приводит к определению производной по направлению.
ГРАДИЕНТ ФУНКЦИИ
и = f(x, у, z), заданной в некоторой обл. пространства (X Y Z), есть вектор с проекциями обозначаемый символами: grad где i, j, k — координатные орты. Г. ф. — есть функция точки (х, у, z), т. е. он образует векторное поле. Производная в направлении Г. ф. в данной точке достигает наибольшего значения и равна:
55. Экстремумы функции двух переменных
Теорема (необходимое условие экстремума). В точке экстремума функции нескольких переменных каждая ее частная производная либо равна нулю, либо не существует.
Точки, в которых выполнены эти условия, называются критическими.
56. Достаточные условия экстремума функции двух переменных
Т еорема. Пусть функция z=f(x,y) определена и имеет непрерывные частные производные второго порядка в некоторой окрестности точки
в которой . Если при этом в этой точке выполнено условие ,
т о точка является точкой экстремума функции, причем точкой максимума, если , и точкой минимума, если
.
Если же в этой точке
, то экстремума в точке нет.
В том случае, если
В точке , теорема ответа не дает.
5 2. Определение дифференцируемой функции
Функция называется дифференцируемой в точке М(х,у), если ее полное приращение можно представить в виде
,
где Δx и Δy -произвольные приращения аргументов х и у в некоторой окрестности точки М(х,у), А и В –постоянные, независящие от Δx и Δy , o(ρ)-бесконечно малая более высокого порядка, чем
-расстояние между М(х,у) и
О пределение дифференциала Главная линейная относительно Δx и Δy часть полного приращения функции называется полным дифференциалом этой функции и обозначается dz или df(x,y) . Таким образом,
Е сли функция дифференцируема в точке М(х,у),то она имеет в этой точке частные производные и , причем
=А, а =В Таким образом, .
Если положить , то
53. Пусть задана функция f(x, y). Тогда каждая из ее частных производных(если они, конечно, существуют) и , которые называются также частными производными первого порядка, снова являются функцией независимых переменных x, y и может, следовательно также иметь частные производные. Частная производная обозначается через или , а через или . Таким образом,
,
и, аналогично,
, .
Производные и называются частными производными второго порядка. Определение:Частной производной второго порядка от функции z=f(x;y) дифференцируемой в области D,называется первая производная от соответствующей частной производной. Рассматривая частные производные от них, получим всевозможные частные производные третьего порядка: , , и т. д.
57. Метод наименьших квадратов— один из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным. Метод основан на минимизации суммы квадратов остатков регрессии.
Необходимо отметить, что собственно методом наименьших квадратов можно назвать метод решения задачи в любой области, если решение заключается или удовлетворяет некоторому критерию минимизации суммы квадратов некоторых функций от искомых переменных.
58. ∫∫M f(x1;x2)dx1dx2 и называется двойным интегралом на множестве М.
Свойства двойного интеграла (и их вывод) аналогичны соответствующим свойствам однократного определенного интеграла.
1°. Аддитивность. Если функция f(x, y) интегрируема в области D и если область D при помощи кривой Г площади нуль разбивается на две связные и не имеющие общих внутренних точек области D1 и D2, то функция f(x, y) интегрируема в каждой из областей D1 и D2,
2°. Линейное свойство. Если функции f(x, y) и g(x, y) интегрируемы в области D, а α и β - любые вещественные числа, то функция [α · f(x, y) + β · g(x, y)] также интегрируема в области D,
3°. Если функции f(x, y) и g(x, y) интегрируемы в области D, то и произведение этих функций интегрируемо в D.
4°. Если функции f(x, y) и g(x, y) обе интегрируемы в области D и всюду в этой области f(x, y) ≤ g(x, y), то
5°. Если функция f(x, y) интегрируема в области D, то и функция |f(x, y)| интегрируема в области D, причем
6°. Теорема о среднем значении. Если обе функции f(x, y) и g(x, y) интегрируемы в области D, функция g(x, y) неотрицательна (неположительна) всюду в этой области, M и m - точная верхняя и точная нижняя грани функции f(x, y) в области D, то найдется число μ, удовлетворяющее неравенству m ≤ μ ≤ M и такое, что справедлива формула
- 6.Уравнение прямой с угловым коэффициентом
- 30.Угол между 2-мя прямыми.
- 18.Скалярные и векторные величины.
- 3. Проекция вектора на ось
- 8.Уравнение прямой в пространстве
- 4. Линейная зависимость векторов. Базис. Разложение вектора по данному базису.
- 1. Матрица. Операции над матрицами.
- 2.Операции над матрицами:
- 2. Система линейных алгебраических уравнений относительно n неизвестных. Решение системы методом Гаусса. Понятие базисного решения.
- 9.Числовая последовательность. Определение предела числовой последовательности.
- 14. Производная ф-ции. Смысл.
- 16. Произв. Сложной и обр. Ф-ции.
- 19.Первообразная функции. Неопределённый интеграл. Основные свойства неопределённого интеграла
- 21,22.Замена переменной (подстановка) в неопределённом интеграле. Интегрирование по частям.
- 23.Универсальная тригонометрическая подстановка.
- 25.Определённый интеграл. Его свойства.
- Теорема
- Формула Ньютона – Лейбница связывает неопределенный и определенный интегралы.
- 27.Замена переменной и интегрирование по частям в определенном интеграле. Метод замены переменной
- 28.Площадь плоской фигуры. Объем тела вращения.
- 59.Дифференциальные уравнения (основные понятия)
- 60. Дифференциальные ур-я 1-го порядка с разделяющимися переменными:
- 62. Линейные дифф-е ур-я 1-го порядка:
- 64. Линейные дифференциальные ур-я 2-го порядка с постоянными коэффициентами:
- 38.Знакочередующиеся ряды.Признак Лейбница.
- 40,42..Понятие степенного ряда .Область сходимости степенного ряда
- 43. Ряды Тейлора и Маклорена.
- 35. Линейная комбинация рядов
- 36. Сравнение,даламбера,интегральный признак, лейбница.
- 40. Доказательство расходимости Предположим, что гармонический ряд сходится к сумме :
- 44. Разложение основных элементарных функций.
- 47. Функции нескольких переменных
- 7°. Важное геометрическое свойство. Равен площади области d (Это свойство, как уже отмечалось ранее, непосредственно вытекает из определения интегрируемости
- 65. Решение дифференциальных уравнений с помощью степенных рядов. С помощью степенных рядов возможно интегрировать дифференциальные уравнения.
- 15. Производная суммы (разности) функций
- 63. Теорема (о структуре общего решения лнду):