logo
Shpory_po_vysshey_matematike_33_netu_37_ne_ves

27.Замена переменной и интегрирование по частям в определенном интеграле. Метод замены переменной

Пусть функция у = f(х) непрерывна на отрезке [a, b], а функция x=φ(t), определена на отрезке [α, β] и имеют на нем непрерывную производную, причем φ (α) = а, φ (β) = b и для всех . Тогда

Метод интегрирования по частям

Если функции u = u(x), v = v(x) имеют непрерывные производные на отрезке [a, b], то справедлива формула

Доказательство.

Поскольку функция u(x)v(x) – первообразная для функции u’(x)v(x) + u(x)v’(x), то

откуда и следует формула которую можно записать в виде