Praktikum_po_mat
Отрицание высказываний, содержащих кванторы
Для построения отрицания высказываний с кванторами надо:
1) квантор общности заменить на квантор существования или наоборот;
2) предикат заменить его отрицанием.
Таким образом, ;
.
Если задана словесная формулировка высказывания с квантором, то нужно:
1) слово «любой» («каждый», «всякий», «все») заменить на слово «существует» («найдется», «некоторый», «хотя бы один»), и наоборот;
2) поставить перед глаголом частицу «не».
Это правило сохраняется и в том случае, если высказывание содержит не один, а несколько кванторов, например:
.
Для построения отрицания импликации полезна следующая формула:
=
Содержание
- Предисловие
- I. Множества и операции над ними
- Понятие множества
- Способы задания множеств. Отношения между множествами
- 3. Объединение и пересечение множеств, их свойства
- 4. Разность множеств. Дополнение к подмножеству
- Задача 3.
- Задача 6
- Контрольные вопросы
- Упражнения
- 5. Разбиение множества на классы
- 6. Декартово умножение множеств
- II. Элементы математической логики
- 2. Высказывания с кванторами
- Отрицание высказываний, содержащих кванторы
- 3. Отношение логического следования и равносильности
- Строение теоремы. Виды теорем
- 6. Математические понятия
- Отношения между понятиями
- Умозаключения
- III. Соответствия и отношения
- Соответствия между элементами двух множеств.
- 2. Функции
- 3. Бинарные отношения
- Алгебраические операции
- IV. Аксиоматическое построение системы натуральных чисел
- Об аксиоматическом построении теории
- Сложение и умножение. Отношение «меньше» «больше»
- Свойства операции сложения
- Свойства операции умножения
- Вычитание и деление
- Правило вычитания числа из суммы
- Правило вычитания суммы из суммы
- Деление суммы на число
- Деление разности на число
- Деление произведения на число
- 4. Множество целых неотрицательных чисел. Деление с остатком
- 5. Свойства множеств натуральных и целых неотрицательных чисел
- V. Теоретико-множественный смысл натурального числа, нуля и операций над числами
- 1. Порядковые и количественные натуральные числа.
- 2. Сложение и вычитание целых неотрицательных чисел.
- Свойства операции сложения
- 3. Умножение целых неотрицательный чисел
- Свойства операции умножения
- 4. Деление