logo
Геодезия

19. Прямая геодезическая задача

В геодезии часто приходится передавать координаты с одной точки на другую. Например, зная исходные координаты точки А (рис.23), горизонтальное расстояние SAB от неё до точки В и направление линии, соединяющей обе точки (дирекционный угол αAB или румб rAB), можно определить координаты точки В. В такой постановке передача координат называется прямой геодезической задачей.

Для точек, расположенных на сфероиде, решение данной задачи представляет значительные трудности. Для точек на плоскости она решается следующим образом.

Дано: Точка А( XA, YA ), SAB и αAB. Найти: точку В( XB, YB ).

Непосредственно из рисунка имеем:

ΔX = XB – XA ; ΔY = YB – YA .

Разности ΔX и ΔY координат точек последующей и предыдущей называются приращениями координат. Они представляют собой проекции отрезка АВ на соответствующие оси координат. Их значения находим из прямоугольного прямоугольника АВС:

ΔX = SAB · cos αAB ;ΔY = SAB · sin αAB .

Так как в этих формулах SAB всегда число положительное, то знаки приращений координат ΔX и ΔY зависят от знаков cos αAB и sin αAB.

При помощи румба приращения координат вычисляют по формулам:

ΔX = SAB · cos rAB ;ΔY = SAB · sin rAB .

Знаки приращениям дают в зависимости от названия румба. Вычислив приращения координат, находим искомые координаты другой точки:

XB = XA + ΔX ; YB = YA + ΔY .

Таким образом можно найти координаты любого числа точек по правилу: координаты последующей точки равны координатам предыдущей точки плюс соответствующие приращения.

Контроль вычислений координат выполняют по формуле