Часть 1
1 Уравнения первого порядка интегрируемые в квадратурах.
Опр:
Решением (интегралом) дифференциального уравнения порядка n называется функция y(x), имеющая на некотором интервале (a, b) производные y'(x),y''(x),...,y(n)(x) до порядка n включительно и удовлетворяющая этому уравнению.
Зада́ча Коши́ — одна из основных задач теории дифференциальных уравнений (обыкновенных и с частными производными); состоит в нахождении решения (интеграла) дифференциального уравнения, удовлетворяющего так называемым начальным условиям (начальным данным).
Общее решение дифференциального уравнения — функция наиболее общего вида, которая при подстановке в дифференциальное уравнение вида
обращает его в тождество.
Частным решением дифференциального уравнения на интервале называется каждая функция y(x), которая при подстановке в уравнение вида
обращает его в верное тождество на интервале .
Осо́бое решен́ие обыкновенного дифференциального уравнения — решение, в любой окрестности каждой точки которого нарушается единственность решения задачи Коши для этого уравнения.
Рассмотрим уравнение
F(x,y,y') = 0, (1) где F(x,y,p) — заданная непрерывная функция в некоторой области .
Решение уравнения (1) , называется особым решением, если каждая точка , его интегральной кривой является точкой локальной неединственности решения задачи Коши.
Особое решение , уравнения (1) геометрически означает, что интегральная кривая для y = ψ(x) в каждой своей точке касается некоторой другой интегральной кривой уравнения (1) и не совпадает с ней в некоторой окрестности этой точки.
Пусть Φ(x,y,C) является общим решением дифференциального уравнения F(x,y,y') = 0. Графически уравнение Φ(x,y,C) = 0 соответствует семейству интегральных кривых на плоскости xy. Если функция Φ(x,y,C) и ее частные производные непрерывны, то огибающая семейства интегральных кривых общего решения определяется системой уравнений:
Теорема Коши. Пусть в области D из Rn+1 непрерывны все компоненты вектора правой части F(x,Y) и их частные производные по Y:
Тогда, какова бы ни была начальная точка (x0,Y0) ≡ (x0,y1, 0 ,y2, 0, … ,yn, 0 ) ∈ D , существует такой отрезок [x0 − h; x0 + h] , что задача Коши Y' = F(x,Y), что Y(x0)=Y0 имеет единственное решение.
Важно понимать, что теорема Коши имеет локальный характер: существование решения Y = Y(x) гарантируется лишь в достаточно малой окрестности точки x0 , ( h > 0 может оказаться достаточно малым).
Важно также понимать, что теорема содержит только достаточные условия существования и единственности решения — при нарушении условий теоремы задача Коши может иметь или не иметь решений, может иметь несколько решений.
Типы:
Дифференциальное уравнение
(3.1)
называется уравнением с разделяющимися переменными.
Умножая обе части уравнения на , получаем уравнение
(3.2)
В уравнении (3.2) коэффициент при dx зависит только от x, а коэффициент при dy зависит только от y. Значит, в уравнении (3.2) переменные разделены. Интегрируя, получаем:
∫ +∫
Однородным дифференциальным уравнением первого порядка, называется уравнение, имеющее вид
(7)
Подстановка ; ; , где преобразует это уравнение к уравнению с разделяющимися переменными.
, , .
Замечание. Функция называется однородной степени , если , где - некоторая константа. Например, функция является однородной функцией степени два.
Дифференциальное уравнение называется квазиоднородным, если для любого выполняется соотношение . Данное уравнение решается заменой :
В силу квазиоднородности, положив , получаем:
, что, очевидно, является однородным уравнением.
Дифференциальные уравнения вида называются линейными.
Метод Бернулли Решение уравнения ищется в виде . При этой замене получаем: . Функцию выбирают из условия . Полученную функцию подставляют в уравнение (учитываем ), решая которое находят функцию .
Уравнение Бернулли
Уравнение Бернулли является одним из наиболее известных нелинейных дифференциальных уравнений первого порядка. Оно записывается в виде
где a(x) и b(x) − непрерывные функции. Если m = 0, то уравнение Бернулли становится линейным дифференциальным уравнением. В случае когда m = 1, уравнение преобразуется в уравнение с разделяющимися переменными. В общем случае, когда m ≠ 0, 1, уравнение Бернулли сводится к линейному дифференциальному уравнению с помощью подстановки
Новое дифференциальное уравнение для функции z(x) имеет вид
Если в уравнении (1) левая часть представляет собой полный дифференциал, то есть , то такое уравнение называется уравнением в полных дифференциалах (частный случай так называемого пфаффова уравнения). Интегральные кривые такого уравнения суть линии уровней функции , т.е. определяются уравнением при всевозможных значениях произвольной постоянной .
Если в области выполнено условие , то общее решение уравнения (1) определяется из уравнения как неявная функция . Через каждую точку области проходит единственная интегральная кривая уравнения (1).
Если рассматриваемая область односвязна, а производные также непрерывны в , то для того, чтобы (1) было уравнением в полных дифференциалах, необходимо и достаточно выполнения условия
(признак уравнения в полных дифференциалах).
Yandex.RTB R-A-252273-3- Часть 1
- [Править] Интегрирующий множитель
- [Править] Алгоритм решения
- 2. Уравнение не разрешимое относительно производной.
- Уравнения, не разрешимые относительно производной
- Пусть уравнение можно разрешить относительно т.Е. Записать в виде Введя параметр (7.1)
- Уравнения Лагранжа и Клеро
- Задания для работы на семинаре
- Задания для самостоятельной работы
- Уравнения высших порядков.
- 4. Линейные уравнения высших порядков.
- Часть II
- 1. Дифференциальные уравнения с разделяющимися переменными.
- Первый способ
- [Править] Второй способ