Дифуры
Первый способ
Разделим все члены уравнения на
получим
Делая замену
и дифференцируя, получаем:
Это уравнение приводится к линейному:
и может быть решено методом Лагранжа (вариации постоянной) или методом интегрирующего множителя.
Yandex.RTB R-A-252273-3Содержание
- Часть 1
- [Править] Интегрирующий множитель
- [Править] Алгоритм решения
- 2. Уравнение не разрешимое относительно производной.
- Уравнения, не разрешимые относительно производной
- Пусть уравнение можно разрешить относительно т.Е. Записать в виде Введя параметр (7.1)
- Уравнения Лагранжа и Клеро
- Задания для работы на семинаре
- Задания для самостоятельной работы
- Уравнения высших порядков.
- 4. Линейные уравнения высших порядков.
- Часть II
- 1. Дифференциальные уравнения с разделяющимися переменными.
- Первый способ
- [Править] Второй способ